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Abstract

Modern optimal control methods are used to develop a multiple input

multiple output controller. The controller is then applied to two models.

The first model is a lumped mass model of a tetrahedron consisting of four

unit masses Interconnected by Isotropic masless rods. These rods are

assumed to be pin-connected and may undergo axial deformation only. The

second model is a sophisticated optical space structure more representa-

tive of large flexible space structures than the first model. This model

consists of fifty-nine nodes and twenty-three lumped masses. The bern

elements are fully connected and may support axial, transverse and torsional

deformations. WASTRAN is employed to generate modal approxInations of

both models, as well as the mode shapes and frequencies of the resulting

modes. Twelve modes are generated for the first model. Of the numerous

modes available for the second model, only the first forty-four modes are

addreased, and of these twelve are Implemented in the controller.

The control problem is formulated in state vector form and full state

feedback is Implemented. The state is represented as modal amplitudes and

rates and the feedback ains are generated using steady state optimal regu-

lator theory. State estimates are provided by means of a deterministic

observer. System outputs are obtained by position sensors cnd control is

applied by point force actuators. The technique by which "spillover" is

eliminated is developed usiag the method of singular value decomposition.

Deceatralized control accomplished usi three and fow controllers

with both models. ConditIons for which the stablity of each model is

assured are developed. Model oms is rum with three contmllers containing

the first e4ht nodes to veify system stability. The rmmtag fow

medes ae added as residuals to the thse costrollers. NOdel wa s o
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DECENTRALIZED CONTROL OF A LARGE SPACE

STRUCTURE AS APPLIED TO THE CSDL 2 MODEL

I. Introduction

With the current success in the Space Transportation System, the near

future holds a significant increase in the size of structures that may be

employed in space. Projected dime-sions for the large space structures

range from tens to thousands of meters in size, taking advantage of the

low gravity environent to make the systems cost effective. Tubular,

lightweight truss members make these structures practical, but also make

them very flexible. The increases in size and flexibility lead to an over-

all increase in the number of low frequency modes that may be contained

within the control system bandwidth. Control of such structures then be-

comes increasingly difficult as the dimensions of the controllers increase.

Since active control is performaJ by on-line computers, larger controller

dimensions result In slower control response. To kehp the controllers

dimensionally realistic, modeling of the satellite and its structural

modes becomes a prim concern. A discrete structural analysis of a large

space structure may include from one hundred to several hundred of these

modes. Unfortunately, the accuracy of the modal information obtained from

such an analysis decreases with increasing mode number. Such modeling

inaccuracies could result in overall system instability when not properly

accounted for.

Of the various control techniques available, modern state-space con-

trol theory appears to be best suited for application to large flexible

space structures, in light of the problems with off-line computing

accuracy and os-line computing speed. These state space controllers make

-- . . ... i1
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use of reduced order finite element structural models to minimize compu-

tational burdens. This may generate modeling and reduction errors, but

allows this method to be easily applied to any of a wide variety of large

flexible space structures. As implied earlier, the number of structural

modes any single controller can handle is limited by computational consi-

derations, but these limits may be extended by using multiple controllers

within the system, each controller performing independently.

Even with an expanded number of controllers, the number of modes that

may be controlled is small compared to the number of modes that exist for

a given structure. Therefore, the selection of modes to be controlled must

be made carefully. Only those modes affecting performance need be con-

trolled. The terms "coatrolled" and "critical" will be used interchange-

atly for the modes. The remaining uncontrolled modes fall into three

categories: suppressed, residual and unmodeled. Obviously, for a large

space structure, the number of structural modes approaches infinity. Natural

damping in the structure will normally prevent instabilities arising from

the higher frequency modes, so, for model simplicity, these are truncated

and left as unmodeled modes. The remaining uncontrolled modes are modeled

modes. Of these, some may have destabilizing affects due to spillover

and therefore have to be made transparent to the controller. These are

called suppressed modes. The last mode group is modeled, uncontrolled and

unsuppressed. These are the residual modes and may move freely when con-

trol is applied. They may become more stable, less stable or unstable due

to control and observation spillover from the critical modes.

It must be remembered that even though specific modes are actively

controlled, the residual and unmodeled modes still exist and will contami-

C nate the observation (sensor) data. Therefore, the controlled and uncon-

2
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trolled modes are coupled. Balas (Ref 1) calls this coupling "observation

spillover". Likewise, any control applied to the critical modes may excite

one or several uncontrolled modes. This form of coupling is referred to as

"control spillover", and Balas goes on to state that either or both types

of spillover may result in overall instabilities. He proposes a state

variable feedback controller which relies on narrow bandpass filters

to eliminate observation spillover by filtering out suppressed mode frequen-

cies from controller input data.

Sesak (Ref 2) proposed the use of a singular perturbation technique to

develop an appropriate feedback controller and eliminate instabilities due

to spillover. Coradetti (Ref 3) later expanded Sesak's approach and con-

cluded that, in the limiting sense with an infinite penalty against any

spillover, the singular perturbation technique is equivalent to finding a

transformation matrix which, when applied to the feedback gains, will drive

the spillover terms to zero. This transformation matrix is determined by

performing a singular value decomposition of the control and observation

matrices (Ref 4). When the transformation technique is coupled with the

modern state-space control technique, an effective method is obtained for

eliminating spillover, and works equally well on control and observation

spillover. Moreover, even when such spillover is not detrimental to the

overall system stability, its elimination can only enhance the system

performance.

The intent of this thesis is to apply the aforementioned control

techniques in developing a control system consisting of three or more

decentralized controllers. This control system will be applied to a lumped

mass tetrahedron model generated by the Charles Stark Draper Laboratory,

CInc., (CSDL), hereafter called the CSDL 1 model. Calico and Janistewski

(Ref 5) applied the described technique to the CSDL 1 model using a single

3
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controller and eliminating only observation spillover. Later, Calico and
(.

Miller (Ref 6) expanded the system to a dual controller, and shoved that

only observation spillover elimination is not sufficient for higher order

controllers. More detailed results are given by Miller (Ref 7) for the

dual controller case. Therefore, it has been demonstrated that this tech-

nique is appropriate for this model. This present study will use three con-

trollers for this model. System performance A ll be evaluated by eigen-

value analysis of the closed loop system. Next, the triple controller

system will be expanded to accommodate the second CSDL model--a three-

mirror, optical space system. Again, an eigenvalue analysis will determine

the control system's closed loop performance. Line of sight pointing

accuracy and defocus are performance criteria that are mentioned for

information, but will not be addressed in this investigation. In applying

the control method, for both models, position sensors are used to determine

modal amplitudes while point force actuators provide the state variable

feedback control.

The following sections will detail both of the CSDL models and their

finite element representations. Afterward, the modal control and matrix

transformation methods will be discussed. Finally, the computer program

implementation and results will be presented.

C4
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II. Model Configuration

Illustration and demonstration of controller design methods for large

space structures has always been a difficult problem. The very nature of

large space structures prevents the development of a simple textbook exam-

ple. In response to this problem, the Charles Stark Draper Laboratory

(CSDL), Inc., of Cambridge, Massachusetts, developed two (paper) models for

research. Both models are used in this investigation. Finite element

representations of the models are generated by the NASTRAN computer pro-

grams. Presentations of the models and their eigenvalue analyses follow.

CSDL 1 Model

The first model used is a lumped mass tetrahedron and is referred to

as the CSDL 1 model. This model was selected for its simplicity as well

as its similarity to basic large space structures under consideration,

from both a structures and a control point of view. The tettahedral struc-

ture is the building block of most large space structure design concepts.

It provides a low order model to which control systems may be easily

applied due to the small number of modes present. Also, response charac-

teristics exhibited by the model are very similar to those observed in

large space structures. This is probably the simplest model available

which behaves much like a large space structure.

The finite element model of the structure is depicted in Fig 1. The

structure has twelve members joined at ten nodes. The truss members are

considered massless and are pin-connected at the nodes, so that only axial

forces are exerted (no bending moments). The masses are equal--one unit

each-and are located at the first four nodes (the vertices of the tetra-

hadron proper). Since each mass is assumed to have three translational
9."

degrees of freedom, the system has twelve structural modes. The last six

5



nodes form the ground connections for the three right-angled bipods which

support the tetrahedral truss. This ground base provides a reference from

which a line of sight may be established. The coordinates for the ten nodes

are given in Table I. The reference frame origin for the coordinates is

placed directly below the apex in the plane of nodes five through ten. Six

pair of collocated force actuators and position sensors are used on this

model.

Table I

CSDL 1 Node Coordinates

Node x z

1 0.0 0.0 10.165

2 -5.0 -2.887 2.0

3 5.0 2.887 2.0

4 0.0 5.7735 2.0

5 -6.0 -1.1547 0.0

6 -4.0 -4.6188 0.0

7 4.0 -4.6188 0.0

8 6.0 -1.1547 0.0

9 2.0 5.7735 0.0

10 -2.0 5.7735 0.0

The key results of an eigenvalue analysis of this model are presented

in Table 11. Listed are the gentralized mass and stiffness and the natural

frequencies of each structural mode. The eigenvectors for each mode are

presented in Appendix A. This data was obtained from a NASTRAZI etgenvalue

analysis.

6*6@ 6
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a. 3 Dinensstonal View

b. Side View c. Top View

Figure 1. CSDL 1 System Model



Table II

Key Results of NASTRAN Eigenvalue Analysis on CSDL 1 Model

Generalized Generalized red rad2

Mode mass Stiffness w sac a sec

1 1.0E+00 1.37E+00 1.17E+00 1.37E400

2 1.OE+00 2.15E400 1.47E+00 2.15E+00

3 1.01400 8.79E+0 2.971+00 8.79E400

4 1.O3-00 1.26E401 3.56E+00 1.26E+01

5 1.O140 1.48E+01 3.85E+00 1.48E401

6 1.0400 2.65E+01 5.152400 2.65E+01

7 1.04W0 3.221401 5.68E+00 3.22E+01

8 1.03+00 3.261W01 5.711+00 3.26E+01

9 1.03+00 7.991+01 8.941+00 7.99E+01

10 1.01400 1.06M402 1.01i1 1.06E+02

11 1.02+00 1.19402 1.091+01 1.19E+02

12 1.0120 1.95W402 1.401+01 1.951W02

ligeuvalue analysis of the modal movements will give an indication of

the performance of the system control. Line of sight, based on the x-y

motion of mode one, is an Important performance parameter. Initial condi-

tions may be applied to the model to develop a time history of the system

response. The Initial conditions for this model are listed in Table 111.

As a first cut on the three controller design, the line of sight pointing

performance will not be addressed In this investigation. Nevertheless,

the development of the error terms to which the initial conditions are

applied will be explained along with the system equations of notion.



Table III

Initial Conditions Applied-to CSDL 1

Node Displacement Wii) Velocity (6)

1 -. 001 -. 003
2 0.006 0.010

3 0.001 0.030

4 -. 009 -.020

5 0.008 0.020

6 -. 001 -. 020

7 -. 002 -. 003

8 0.002 0.004

9 0.000 0.000

10 0.000 O.O

11 O.O O.000

12 0.000 0.000

CSDL 2 Model

The second model under consideration is a "generic" optical space

structure which has a behavior much closer to that of a large space

structure than the first discussed. This model is referred to as CSDL 2.

Figure 2 shows a conceptual view of the structure and Fig 3 is a finite

element representation of the model.

CSDL 2 is a non-trivial model representing a wide-angle, three-mirror,

optical space system The two major components of the system are the opti-

cal support 3truct and the equipment section. The optical support struc-

ture consists of the upper mirror support truss, the lower mirror support

trus, and the metering truss. The upper mirror support truss contains the

primary mirror (convex shaped) and the tertiary mirror (concave shaped).

The lover mirror support truss contains the secondary mirror (flat) and the

focal plame (Image receiving device). The metering truss maintains the

mrror separation and Is the key section "n .amiuing defocus. The opti-

9



Figuro 2. CSDL Coccept'aal Darau
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Figure 3. CSDL System Model
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cal support structure and mirror placement are shown In Figure 4. Attached

to the lower side of the lover mirror support truss is the 'equipment sec-

tion which consists of the control package, modeled as a rigid body, with

two cantilevered flexible solar panels. The full structure is approximately

twenty-eight meters high and has a mass of 9300 kilograms. The structural

dimensions are shown in Figure 5.

The finite element model of the structure contains fifty-nine node

points, but the actual structure has only fifty-one nodes. The extra nodes

were added to provide more detail In the modeling of the mirrors and equip-

mint section (Ref 8). The coordinates of the nodes are given in Table IV,

and the placement of the nodes in the support structure are shown in Fig

6. Unlike the first model, the truss members are fully joined so that bend-

ing and torsion are allowed. The truss elements are made of graphite-epoxy

and assumed to be massless. The system mass is lu'ped at twenty-three nodes

and distributed as shown in Table V. The largest mass is located In the

equipment package, as would be expected.

The key results of an sigenvalmue nalysis performed on this model are

listed in Table VI. The generalized mass and stiffness, as well as the

natural frequency of the first forty-four structural modes is given. Of

the modes listed, those with an asterisk were used In this study. The

associated esigenvectors for each mode are presented in Appendix B. Again,

this data is obtained via the EASTIAn computer program.

This model makes use of twenty-one pairs of collocated force actuators

and position sensors. A list of sensor/actuator locationsand orientations

Is provided in Table VII.

As In the CID!. I model, elwemalue analyses wU provide control per-

fozmoce lnformation. LUme-f-slght performace, as well as defocus along

12
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Table IV

CSDL 2 Node Coordinates

Node X(m) Y(m) Z(M) Node Z(M)

1 -7.0 0.0 0.0 37 -4.0 -3.0 24.0

2 -4.0 5.0 0.0 38 4.0 3.0 24.0

3 -4.0 -5.0 0.0 39 4.0 -3.0 24.0

4 0.0 5.0 0.0 40 0.0 2.5 2.0

5 4.0 5.0 0.0 42 0.0 5.0 -0.3

6 4.0 -5.0 0.0 43 -2.0 0.0 -1.3

7 7.0 0.0 0.0 44 0.0 -1.7 -1.3

8 -7.0 0.0 2.0 45 2.0 0.0 -1.3

9 -4.0 5.0 2.0 46 -4.0 -5.0 -0.3

10 -4.0 -5.0 2.0 47 4.0 -5.0 -0.3

11 4.0 5.0 2.0 48 -26.0 0.0 -1.3
12 4.0 -5.0 2.0 49 -21.0 0.0 -1.3
13 7.0 0.0 2.0 50 -16.0 0.0 -1.3
14 -6.0 0.0 12.0 51 -11.0 0.0 -1.3
15 -4.0 4.0 12.0 52 -6.0 0.0 -1.3
16 -4.0 -4.0 12.0 53 6.0 0.0 -1.3
17 4.0 4.0 12.0 54 11.0 0.0 -1.3
18 4.0 -4.0 12.0 55 16.0 0.0 -1.3
19 6.0 0.0 12.0 56 21.0 0.0 -1.3
26 -5.0 0.0 22.0 57 26.0 0.0 -1.3
27 -4.0 3.0 22.0 100 0.0 0.0 0.0
28 -4.0 -3.0 22.0 910 -4.0 -2.5 2.0

29 4.0 3.0 22.0 1001 0.0 -6.5 22.0

30 4.c -3.0 22.0 1002 0.0 0.0 2.0

31 5.0 0.0 22.0 1003 0.0 6.5 22.0

32 -4.0 10.0 22.0 1004 0.0 4.0 2.0

33 4.0 10.0 22.0 1112 4.0 -2.5 2.0

34 -4.0 -10.0 22.0 2830 0.0 -3.0 22.0

35 4.0 -10.0 22.0 3233 0.0 10.0 22.0
36 -4.0 3.0 24.0

16



Table V

CSDL 2 Lumped Mass Distribution

Node Mass (kg) Node Mass (kg)

9 67.4 52 73.8

10 67.4 53 73.8

11 67.4 55 163.8

12 67.4 57 81.9

27 69.5 1001 1000

28 6.74 1002 800

29 69.5 1003 !.)O

30 6.74 1004 600

32 6.74

33 6.74

34 69.5

35 69.5

44 3500

48 81.9

50 1.638

(i1
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Table VI

Key Results of NASTRAN Eigenvalue Analysis on Nominal CSDL 2 Model

Generalized Generalized tad rad2

Mode Mass Stiffness w see i) sec

1-6* I.OOE+00 0.0 0.0 0.0
7* 1.OOE+00 5.128E-01 7.161E-0l 5.128E-01

8 1.OOE+00 8.521E-01 9.231E-01 8.521E-01

9 1.OOE+00 8.835E-01 9.399E-01 8.835E-01

10 1.OOE00 1.212E+00 1.101E+00 1.212E+00

11 1. OOE00 8.189E+00 2.862E400 8.189E+00

12* I.OOE+O0 1.266E+01 3.502E400 1.226E+01

13* i.OOE+00 1.403E+01 3.746E+00 1.403E+01

14 1.00E+00 1.492E+01 3.8631+00 1.492E+01

15 1.00E+00 '.599E+01 3.998E401) 1.599E+01

16 1.OOE+O0 1.b25E+01 4.032E+00 1.625 M0I

17* 1.OOE+00 2.623E+01 5.122E+00 2.623E+01

18 1.OOE+00 2.630E+01 5.128E+00 2.630+01

19 1.OOE+00 2.677E+01 5.174E+00 2.677E+01

20 I.OOE+00 3.310E+01 5.753E+00 3.310E+01

21* i.OOE+00 3.730E+01 6.197E+O0 3.730E+01

22* I. 00+00 5.301E+01 7.281E+00 5.301E+01

23 L.OOE+O0 9.498E+01 9.746E+00 9.498E+01

24* 1.00E+00 1.241+02 1.114E+O1 1.241E+02

25 1.OOE+00 1.999+02 1.414+01 1.999E+02

26 1.OOE+00 2.001+02 1.416E+01 2.001E+02

27 1.OOE+00 4.654+02 2.157E+01 4.654E+02

28* 1.OO+00 4.705E+02 2.169E+01 4.705E+02

29 I.GG EO Q 6.182+02 2.468E1+1 6.182E+O2

30* 1.OE0 6.275E+02 2.505E+01 6.275E+02

31 1.OOE+00 6.481E+02 2.546E+01 6.481E+02

32 1.001+0 7.428E+02 2.725B+01 7.428E+02

33 1.OO+0 1.7001+03 4.123E401 1.700:OW3

34 1.OOE+00 2.568E+03 5.067E+01 2.568'.+03

35 I.OOE+00 2.821E+03 5.311E+01 2.821E+03

36 I.OOE+00 3.095E+03 5.563E+01 3.095M:43

18



Table VI. continued

Key Results of NASTRAN ligenvalue Analysis on Nominal CSDL 2 Model

Generalized Generalized radd 2

Mode Mass Stiffness w see a 2e

37 1.001400 3.205E403 5.6611401 3.205E403

38 L.001400 4.2211+03 6.497E+01 4.221E+03

39 1.001+00 4.3801403 6.6181401 4.3801403

40 1.001400 5.266E+03 7.257E401 5.266E403

41 1.01400 5.358E403 7.320E1401 5.358E403

42 1.001400 5.360E+03 7.321E401 5.360E403

43 1.001400 5.361E403 7.322E401 5.361E+03

44 1.001400 5.368E403 7.327E401 5.368E4-03

*denotes modes actively controlled in this study. Of the rigid

body modes, only 4, 5, and 6 vere controlled.
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Table VII

CSDL 2 Sensor/Actuator Locations and Orientations

Pair Node x z

1 9 0 1 0 (in

2 9 0 0 1 direction

3 10 0 0 1 cosines)

4 11 1 0 0

5 11 0 1 0

6 11 0 0 1

7 12 0 0 1

8 27 1 0 0

9 27 0 1 0

10 27 0 0 1

11 28 0 0 1

12 29 0 1 0

13 29 0 0 1

14 30 0 0 1

15 32 0 0 1

16 33 0 0 1

17 34 1 0 0

18 34 0 1 0

19 34 0 0 1

20 35 0 1 0

21 35 0 0 1

the z-axis, are Important analysis factors, but as a first cut, vill not

be directly addressed in this Investigation. Instead, the oigenvalue

analysis vil provide information on controller maintenance of modal

stability and on controller independence (decoupling).

The controller development on which this study Is based will now be

presented.

20
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III. SUstem Model

1"stIons of IDsAODo

As presented by Calico and Millor (&fafs 6 and 7), the systema model

my be developed from ti4 vibrational equations of motion for a large

space structure given generally as

M! + 4g+ gnD()

where

M - m syme ric mass matrix

I - imm symmetric damping matrix

K . im sy mtric stiffness matrix

D - z matrix of nodal, attitude-evaluated actuator locations

i- nil generalized coordinate vector

- umu control input vector

Introducing the mm modal matrix # for Eq 1, such that

g n (2)

where i is the n-vector of modal coordinates, Eq 1 may be written as

=+ r[Co +] " TG (3)

the W i and i term being natural frequencies and damping coefficients,

respectively, of the specific modes. The properties of the mnodal matrix

0 are such that the coefficients of Eq 3 are given by

T]21 (4)
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where

[I = identity matrix

[2W.b Ma diagonal daming matrix

F2 j- M1 diagonal matrix of eigeuvalues of Eq I

Equation 3 may nov be converted Into a state space representation of

the system, given by

z - A + D (5)

in which

A - nxn plant matrix

B - m input matrix

- nil state vector

- .ml control input vector

These system parameters are of the form:

0 1L

[ (6)

O TD

I- {}

The complete state, however, is normally not available, so Eq 5 must be

suppleumnted by an output equation. State space form gives the sensor

output as
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C + (7)

when both position (p subscript) and velocity (v subscript) sensors are

used. Expressing this in state vector x:

y Cx (8)

where

C = p .*C v  (9)

Equations 5 and 8 form the large space structure model available to the

control designer. These equations will be further explained so they will

hold more significance when being applied to modal control of flexible

structures.

Control Model

The full structural model is represented by the 2n-dimensional state

vector i. As noted earlier, it is Impossible to model all of the possible

modes for a complex structure, and of those modeled. even fewer will be

actively controlled. Assuming that multiple controllers are available,

each controlling a small subset nI of nodes, as in this investigation, the

state vector may be simply represented by

T x2 . . .. ..  ' i ' r x ' u (10)

The xI terms reprosent 2n 1-vectors of modal amplitudes and velocities as

defined by the last of Nq 6 controlled by the I th controller of 5 con-

trollers present. The zr represents a 2ar-vector of residual modes and

the the ; represents a 2nu -vector of unmodeled modes.

As defined earlier, the ummodeled modes are those which mist but are

beyond the numer of nodes In the structural model. These will s loner

appear In the derivations. The residual modes are those which are modeled
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but not controlled. The controlled modes are those which require active

control in order to obtain satisfactory system response. The selection

of the modes to be controlled and their assignment to one of the N con-

trollers is left to the control designer.

It should be noted at this point that suppressed modes were not

directly referred to above even though they were defined earlier in the

text. They have not been ignored, in fact they are included within the

controlled modes, in the following manner: In a multiple controller

design, the individual controller actively controls those modes assigned

to it and "ignores" the residual modes defined above. kt the modes

assigned to the other controllers still interact with this individual

controller, causing control and/or observation spillover. In the process

of controlling the system, each controller contributes to the elimination

of observation and control spillover in the system. Thus, each controller,

in effect "suppresses" the modes contained in the other controllers. In

other words, the controlled modes of one controller are the suppressed

modes of another controller. Therefore, the suppressed modes are con-

taoed Implicitly vithin the controlled modes. So, like the umodeled

modes, the suppressed modes exist in the system, but vill not be men-

tioned any longer In the derivations since they are included Implicitly

in the controlled modes.

Continuing with the derivation, the notation of Eq 10 my be used

to express the state equations as follows

i *i I :i-I ,...
L A + a I I 1 . . (12)
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y z Cll + C r xr  (0 )
I=1

where the A, 5 and C matrices are

0 • I

A - * 19 ... ii 2, _9. N, r (14)

2 j 2r.T ]

I--0

L T D  
j - 1 , 2 , ... , N , r (1 )

TT

M oreover, the lower partition of Eq 15, the 4TDL and *TD r matrices, are of

the form

*TDi a T1  (17)

OTD - T (18)

where

i ljk - * I dk (19)

r) jk drk (20)

The* j are the colm vectors of the matrix # and the dik and drk are the

column vectors of the DL and Dr matrices, respectively. Using the form

given In Iqs 17 to 20, the ,TDI and #TDr matrices may be represented as

25
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(' i) (*i)12 (i a• a

S"(t)21 (*1)22 N01)2 n (21)

(*r) 11 (*r)12 ( or)1 n
a

r (*r)21 (*r) 22 (*r)2 n (22)
a

*rnr1 (*r)nr2 ... (*r)nr n

where n is the number of modes in the i th controller, nr is the number of

residual modes, and na is the number of actuators employed. This allows

Eq 15 to be rewritten as

B [ J - 1, 2, ..., N, r (23)

In stmpler terms, the rows of the m atrices represent the amplitude of

each structural node along the line of action of each actuator location.

The dimension of the i matrices is nj x n a making the dimension of

the B matrices 2nj x na when the upper null partition in included. Like-

wide it can be seen that the C p, and Cvj# partitions of Eq 16 are of

dimesion n x n 1 where na is the number of sensors employed. This makes

the dimension of the C matrices ns x 2n.

hemingW the C matrix more closely, the Cpj and Cvj terms are the

position sad velocity coefficient matrices, respectively, of the sensors

employed, assuming that both position and velocity sensors are used.

However, in this study, only pfs..tion sensors are used. This makes the

Cvinto zero matrices so that Iq 16 now becomes
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cj- [C . o] j - 1, 2, ... , N, r (24)

Furthermore, when collocated sensor/actuators are mployed with the sam

alignment, this simplifies even more. In this special case

so that
0 J - 1, 2, ..., N, r (27)Cj

This simplicity is the prime advantage of using position sensors only.
T

As was pointed out in the Bi matrix, the columns of the Tj matrix in

C represent the amplitudes of each structural mode at each sensor location

along the line of the sensor.

The equations thus derived are very general in form and are indepen-

dent of structural complexity. Only the matrix dimensions will vary

depending on the number of sensors, actuatore and modes studied. This

general development can lead ore to understand the wide variety of

structures to which the following analysis may be applied.

Modal Control

The controller design for N controllers will be based upon the model

given by Eqs 11 and 13 which, restated, are

xi " A I x + Bl ( )

N
y I CixI + Crxr  (13)

1

The state feedback control desired is of the form

N
- EG Ix (28)

i-l

where Gi are the control gain matrices. The development of the G1 matrices
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will be presented ahortly.

To forn this active control ucomplete knowledge of the state vector

Is needed. Unfortunately, direct measurement of the entire state vector

is Impossible and the only measure of ; is the masurement j given by

the sensors. As a result, it is ncessary to develop a state estimator

whIch can take the observations i and produce an estimate of i. Thisca

be done by eploying an observer of the for

XI Aix I Be+ K 1 (5 - ) (29)

Where x I are the estimated states, yI are the estimated outputs and K i are

the observer gain matrices. The K matrices are chosen such that the error

in the state estimate

a x- (31)

is asymptotically stable. Now, the control vector, in terms of the esti-

mated state is given by

G 1~x (32)

Rquatione 11, 13, 29, 30 and 32 represent the control problem for a large

space structure.

Bef ore proceeding say further * time will be taken aom to develop the

control gala matrices 0 d observer gain matrice* Ki. for this, linear

optimal regulator theory (Ref 9) is used. The control gain matrix 0 Is

derived first, starting by defininmg a quadratic performce Index 3

sech thata

(. r I*~ jT Q 3i+ TRj ,dt (33)
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where

Q is an n x n positive semidefinite weighting matrix

R is an a x m positive definite weighting matrix

It is desired to minimize this index subject to Eq 11. Then, the optimal

solution to the minimization problem is

G -1'BTS (34)

where S is the solution to the steady state matrix Riccati equation:
T -1

SIA I +A Si - $1BiR BT Si + Q -W 0 (35)

Realizing that the eigenvalues of the matrix (Ai-KiCi) are the same as

the elgenvalues of its transpose (AiT-ciTKiT), a similar development mayth e

be used for the observer gain matrices Ki. An equation for the system

similar to Eq 11 can be written using the state ;:

where the g is the control input given by

&main, using linear optmeal regulator theory, a quadratic performance index

is defined:

J- J (;1 T +b£ t + Si 1 bi -) dt (38)

0

where Qob and Rob are wighting matrices as defined for Eq 33, but are not

necessarily the saw exact matrices for the Gi matrices. It may be

desirable to weight the observation data more or less than the control

feedback.

Coutimuing, Eq 38 is miniized subject to Eq 36 and the observation

Sala uatrix is given by
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Ki W +Robi - I Ci Pi (39)

where Pi is the solution to the steady state matrix Riccati equation:

Pi AiT + Ai Pi - Pi CiT Robi-1 Ci Pi + Qobi 0 (40)

It may be noted that Eq 40 is, in effect, the transpose of Eq 35, which

follows since the observation gain matrix is developed from the transpose

of the system matrix (Ai - KiCi).

Equations 34 and 39 now form the control gains Gi and observation

estimator gais Ki to be used in their respective controllers, and are

determined such that each controller is stable. However, due to coupling

these controllers and observers are not independent. Therefore, even

though the Gi and Ki matrices keep their individual controllers stable,

the overall system may be unstable.

This system instability, even with stable controllers, can be seen in

the following development. To begin, an N-controller system will be

illustrated. Then a three- and four-controller system will be shown. It

will become obvious that controller stability alone will not guarantee over-

all system stability. The one- and two-controller systems were demonstrated

by Miller, and he proceeded as far as deriving the three controller case.

N Controller

For a multiple input multiple out controller, the state equations are

given by Eq 11 as

Xi a Aixi + Biu i - 1, 2, ... , N (41)

but for reasons stated earlier, an observer of the form given by Eqs 29

and 30 is used

- Aixi + Biu + Ki(Y - i 1, 2, ... , N (42)
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Y M CX i - 1, 2, ..., N (43)

where tho subscript i denotes the i th controller, xi the estimated state

vectors and yl the estimated output vectors.

The observation gain matrices Ki are chosen such that the state

estimate errors

ei ft X - xi i = 1, 2, ... , N (44)

approach zero for large time. The control is then given by

- N
u E Gix i  (45)

il

Equations 42, 43, and 44 may then be combined with the state equation

given in Eq 41 to obtain the state estimate errors:

e xi _ xi = (A + r K C i 1, 2, ... , N (46)

jim j 1, 2, ... , N, r

Now, using the state equations given in Eq 41, along with the control

stated in Eq 45 above, the controlled state equations are given by

: N

M (Ai + BiGi)xi + iGie i + Z BiG x i - 1, 2, ..., N (47)

j-i

The states i and errors in the states ei may be collectively

evaluated by the controlled system state presented as an augmented state

vector of Eqs 46 and 47. This vector 1 is given by

T - T - T - T - T - T - T T (48)z e"1 '2 e 2 ..... , N  (N x r
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Writing out the closed loop state equations, in terms of z, gives

A, BIGI B1 G1  -- B1 Gi B1G i --- n B1G Gn 0

o A1-KCl -- 01  -- KC n  0 1Cr

Z B i G BC 1  Ai+BiGi BiGi  --- BiGn  KiCr  0 z

KiC 0 --- 0 Ai-K C --- KiC 0 0
11 1 i i i n

(49)

IB G1 B G --- G G BG 0BnG unG -- nui Bni An+Bnn n n

A -K C K C
K n 0 --- K -- 0 n n n n

Brr Gs -e Br beB rGi Br rGi BrGn Br Ar

The system matrix may be either upper or lower block triangularized.

For upper block triangular form, the spillover elimination required is

and j - 1, 2, ..., N-1; i -j + 1, ... , N (50)

KiC - 0

and for lower block triangular form

BGj -0

and i- 1, 2, ..., N-l; j - + 1, ..., N (51)

K C =0

The block structure of Eq 49 can be more easily seen in specific exam-

ple, therefore the three and four controller cases will now be examined.

Three Controllers

Setting N - 3 and following the form given in the previous development
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for N controllers, the state equations for a three controller system

are given as

X,- A 1z + Slu (52)

12 = A2 2 + B-Ax (53)

x3 a A33 + B3u (54)

where the subscripts designate the controller described by the equation.

The observer to be used is

-Z- M A i + Biu + Ki( -yi) i - 1,2, 3 (55)

Yi M Cix i - 1, 2, 3 (56)

Again, the observer gain matrices K are chosen such that the error in the

state estimates

ei = x i - z i i - 1, 2, 3 (57) ]

are asymptotically stable. And now the control applied is given by

u - G + Gz 2 + G3 3  (58)

Using Eqs 52 through 57, the system's state estimate errors may be

shown as described in Eq 46 for N - 3:. . ,
ea = x 1 - z = (A,-KC)e1 + K1C2u2 + K1C33 + K1 Cr r (59)

e2 - x2 - x2 - (A2-K2C2)e2 + K2 Cxl + K2C3x3 + K2Crzr (60)

*"3 i 3 - (A 3 " - 3-C 3 )e 3 + K3 c 1x + K3C22 + KCrxr (61)
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Combining the state equations and the control given in Eq 58, the states

.may now be described, as given in Eq 47 by

X, a (A1 + B1G) 1 I + B1G I + B1G2i2 + BIG3 3 (62)

" 2 (A2 + B2G2 )x 2 + B2G2 e2 + B2G1i 1 + B2G3i3  (63)

3 = (A3 + B3G3)x3 + B3G3 e3 + B3G 1  + B3G2 ; 2  (64)

and similarly

Ar r + B r G 1  + BrG x2 + BrG3x3  (65)

Combining the system equations, presented in Eqs 59 through 65, into an

augmented state vector z,

z { =I- T -T - T T ; T T3T' 9} . (66)

the closed loop system equation may be given as

AI+B1G B1G1 B 1G2  BIG2  B% B 0

0 A1+K1 C K C2  0 Kl 3  0 KlC r

2 2 G1 "2G1 A2+"2G2  B2G2  2G3  B23 0 (67)
Z"

K2C, 0 0 A2- 2c 2  K2 C3  2cr

B3G I3G1 B3 3 G 3G2  A+B 3G3  03

K3C1  0 K3C2  0 0 A3-B3C3  K3Cr

BrG 1  BrGl BrG2 BrG2 BrG3 Br 3 Ar

Eq 67 makes it very obvious that controller stability cannot guaran-

tee overall system stability. It is also easy to see that block triangular-

ization will be consids rably more difficult to achieve. As before, either
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upper or lower block triangularization say be attempted. In either case

the resulting eigenvalues will be the same since they are determined by the

block diagonal terms. The observation spillover and control spillover terms

to be eliminated for both schems are presented in Table VIII.

Table VIII

Spillover Elimination for Decoupling Three Controllers

Upper Trianaularization or Lover Triangularization

B2 G 1 - 0 B1G - 0

B3G1 -0 BG - 0

B3G2 -G - 0

K2C 1 - KlC2 0

K 3 C1 .0K 1C3  o

K3C 2 -0 K2C3  0

There are actually two methods of approaching the elimination of spill-

over in the three controller system. The first of these deals with selective

placement of the sensors. If the sensors are positioned in a proper manner,

the modal amplitude matrix 0, and as a result, the system's 3 and C matrices,

will be of the form that a selective arrangement of controlled mode,, will

make one controllerorthogonal to the other two controllers. In effect, this

reduces the problem to a two controller system since the twG controllers will

have no effect on a controller orthogonal to them. Then, only the spillover

terms between the two non-orthogonal controllers need be considered. This

as specifically demonstrated by Miller I his examination of a three con-

troller system.

To present an exmple, asums the controller three modem are ortho-

gonal to the controiler one and two eodes. Them all cross terms between
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one and three and two and three will be zero, which effectively reduces

Table VIII to the spillover elimination requirements:

for upper triangulaz form

1201 . 0 and r2C1 - 0 (68)

and for lower triangular form

19 2 - 0 and K 1C 2 - 0 (69)

It can be shown that these terms are the same as those required to block

triangularize the two controller system, thus demonstrating the three controller

reduction to a two controller system. However, since the intent of this study

is to examine a three and four controller system, this approach will not be

addressed further.

The second approach proposes that in the transformation a matrix r3 (or

r1) be found which will drive both K3 C1 and K3C2 (K1 C2 and YYC3) to zero, and

a matrix T1 (or T3 ) be found which will drive both B2G1 and a3G1 (1G. and

2 G3) to zero. This process will be explained in the next chapeur, however,

for now, it is not always possible to find transformation matrices which

will reduce the spillover terms to zero. On the other hand, it is also not

always possible to position the sensors such that there are two orthogonal

sets of modes to reduce the system to two controllers. Therefore, a

compromise is in order: If two clearly orthogonal sets of modes are not

available, the modes should be assigned so they are as nearly orthogonal

as possible. Then the transformation is performed on the full set of spill-

over terms given in Table VIII. This investigation will sasums the modes

are not fully orthogonal, but still assign the sodes to make the controllers

as orthogoaal an possible, and attempt to find transformation matrices

ukich vili make each spillover term in Table VIII approximately zero.
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Four Controllers

The four controller development is Identical to that of three con-

trollers, so the basic results only vil be presented. The state equations

are given by setting N - 4 in Eq 41, and the observers are given by Eqs 42

and 43, again setting N - 4. The state estimate error is given by Eq 44

and the resulting control applied is

u - G 11 + G272 + G33 + G4i4

To avoid repeating the equations already presented, suffice it to say

that the state estimate errors are of the form, given for the first con-

troller

e -1 , - Z,. - -+ Klc21 + K1C3 x3 + KlC 4x4 + K1Cr, (70)

and the full state equations are of the form, again given for the first

controller

x a (A+B +G1G1)z + B11 + + I1 G2 x2 + 31 G3 i 3 + 1G 4 4  (71)

The remaining three controllers' errors and states may be derived from

Zqs 46 and 47, respectively.

These may be combined into the controlled system state vector z,

defined as

I-T-T-T-T. {Tj *1 -,' -*2 , '3 -*3, '4 , *4,  } (72)

and the closed loop system equations may be given as

.3
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A1 .5 G B1G1  B 1 G 2  B1G2  Bl% B1G3  BlG 4  B1G4  0
o -KlCl KlC2  o 3 C 0 lCr

B2G1  B2G1  A2+B2C2 B2G2  B2G3  B2G3  B2G4  B2G4  0

a 2C1  0 0 2- 2C2  K2 C3  K2C4  K2Cr

B3G1 B3 1 B3G2 3G2 A3+B3G3 B33 B3G4 B3G4 0

(73)
K3C1  0 K3C2  0 0 A3-K3C3  [3C4  0 K3Cr

54G, B4G1 B4C2 B4G2 B4'3 B4G3 A4+B4G4  B4G 4  0

[C 0 0C04C1 0 [4C2  0 K4C3  0 0 A4-K4C4 K4C r

BriG BrG B rG2 BrG2 BrG3 BrG3 BrG4 BrG4 Ar

The spillover terms to be eliminated are given in Table IX, and

correspond to the conditions given in Eqs 50 and 51. It is apparent this

system is more difficult to block triangularize than the three controller

system. However, a prime advantage to using additional controllers is the

number of modes to be controlled may be divided among more controllers.

This reduces the order of each controller thus reducing the burden on the

computer. This is especially important in solving the matrix Riccati equa-

tions, Eqs 35 and 40, since the computational burden is approximately the

cube of the order of the equation (Ref 3).
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Table IX

Spillover Elimination for Decoupling Four Controllers

Upper Triangularization or Lower Triangularization

3zc 2 G 1c M 0o C B I G2 a 0 Klc2  0
B3G -G o c M- o ,B C3 - o Kc 3 -
B32 12 2a0B K1C OEG 3 -o K3c 1 -o EG -o c -

B4G1  0 K4 C1  2 G3  0 K2 C3  0

' 4G2 -0 4 C2 - 0  B2 G4 -0 K2 C4 - 0

B4 G3 = K4C3 = 0 B3 G4 = 0 K3C4 = 0

Sensor/Actuator Requirements

As mentioned for three controllers, in order to perform spillover

suppression, one or more gain matrices must be made orthogonal to N-1

B or C matrices. For example, from Eq 50, to satisfy the expression

for Bi G the columns of G1 must be simul.taneously orthogonal to the rows

of B2 through BN. In order words, the columns of G1 must be in the

null space of the matrix B2N where B2N is defined as

B2

B3

B 2N ... (74)

The null space of B2N has dimension P23 given as

P2N - (n - r 2 N) (73)

where
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na W number of actuators

r2N ' rank of B2N - in (n2 + n3 + ... + n., a

Therefore, G1 has P2N columns.

The number of actuators must exceed the rank of B2N in order for

B2N G1 - 0. Ocherwise the system is overspecifled and no transformation

matrix exists which will drive the B2N G 1 to zero. If the rows of B2 .

are linearly independent, then the number of actuators needed is given as

N
n > na 1-2 (76)

and if the rows are not linearly independent, na>r2N. It can be seen

that the other control gain matrices will have a sufficient number of

actuators is the inequality in Eq 76 is met'. A similar study shows that

the number of sensors needed is, for C2 with linearly independent columns

N-1
n > I nI (77)

&.:- fnr eou!ais that are not linearly independent, na> r 2N where r2N

here is the rank of C2W.

Likewise, for the lover block triangular conditions given in Eq 51,

the actuator and sensor requirements can be shown to be

N-1
a • n (78)

1-1

N
ae > Z n (79)

L-2

for linearly independent rows and coluw of the 12N and C2N matrices,

respectively.

It should be pointed out that satisfying the inequalities given in
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Eqs 76 through 79 may actually require more actuators and sensors than

Indicated. As an example, consider a thirty mode model. Using three

controllers, each with ten modes, the above inequalities require at least

twenty sensors and twenty actuators to assure decoupled system stability.

However, to control and observe the system, at least one more sensor and

actuator would be required. These conditions must be met in order to

generate the transformation matrices and to implement the controllers.
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IV. Transformation Technique

It has been mentioned several times that the close loop state equa-

tions, Eqs 49, 67 and 73, will be put into block triangular form by

the selective elimination of control and observation spillover terms.

However, the exact details of thia spillover elimination have been

neglected until nov. The following wil describe the generation of the

transformation matrices, which were referred to specifically as T and r

in the previous section. The T matrix is a transformation matrix for the

control spillover and the r matrix is a transformation matrix for the

observation spillover.

In a single controller case, it can be seen that the spillover term

which, when eliminated. will assure system stability are B G or5

KCa, where the s subscript designates modes to be suppressed. An ited-

iately obvious solution to this is G - 0 or K - 0. But this solution will

make the respective controllability term BcG, or observability term

[Cc, equal to zero also. Therefore, this solution is unsatisfactory. ,e

transformation method generates a solution which for a single controller,

is subject to the conditions:

BG 0 (80)

or

[C -0 (81)

while maintaining

BcG 0 0 (82)

or

S#0 (83)

It would also be desirable to apply the additional constraint to the
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residual modes

B G - 0 (84)

lKCr - 0 (85)r

however, due to the large number of structural modes present in the model,

this constraint is not realistic and will be ignored in this development.

The effects of the residual spillovers may be minimized by the careful

selection of mode designated as residual or suppressed, so as to create

a frequency separation between the residuals and the bandwidth of the

controller.

For a multiple controller, the conditions given in Eqs 80 and 81

apply, but nov the B8 and C8 matrices may take on the form illustrated

by Zq 74 and will be referred to as the BiN and CiN matrices. Instead of

discussing all of the possible combinations of BiN and CiN for N con-

trollers, take as an example the first condition given in Eq 50, that is

BiGj  0 j -1, 2, ... , N-1; i - j + l, ... , N (86)

Given N controAlers, 01 will have to be made orthogonal to N-i B matrices.

The U-1 3 matrices say be combined into a single matrix such that

F ~2

hii

B 3

L%J

Therefore, one of the conditions to be met is B1 2 a 0. In other words,

the matrix uyst be transformed much that its colums are orthogonal to

the ro of 1n. or,,as stated In the previous section, G, most be in the
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null space of B2N. This is the most difficult case for N controllers and

is presented only to describe how the multiple matrix is set up. The

remainder of the derivation will be in terms of a generic B matrix whichS

represents B2N and B2 alike.

The transformation matrix sought will be referred to as T and will be

such that

B T- 0 (88)s

B has the row dimension of n (the number of modes to be suppressed) and

the column dimension of n (the number of actuators). T, therefore, hasa

dimensions of na by na - n . If there are fewer actuators than linearly

independent modes, then no solution matrix T exists. The system is over-

specified in tis case, meaning there are more equations than unknowns.

If the number of modes and actuators are equivalent, then the system is

stable but uncontrollable (or in the case of the KC matrices, the system is

stable but unobservable assuming an equal number of sensors and actuators).

The actuators (sensors) are saturated with maintaining stability alone.

Simply stated, the conditions given in Eq 76 and 77 must be met in

order to generate a transformation matrix.

Tj illustrate the result of applying the transformation matrix described

above, consider the following system of controlled and suppressed modes:

x - A x + B u (89)

x - Ax +Bu (90)

where

G (91)
C c

The B u ter1 of Eq 90 is a control spillover term which may be adversely
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affected by the control applied to Eq 89. The elimination of this term

requires the use of a transformation matrix T such that

B T - 0 (92)
s

while maintaining

B T 4 0 (93)
C

This transformation matrix may be used to define a new control ; as

u - Tv (94)

Inserting this expression into the state equations given in Eqs 89

and 90 yields

S xAx + B Tv (95)C cc c

x f- A sx + B Tv (96)5 SS S

Letting B cT - B* and knowing that B sT = 0 the new system is described by

x = A x + B*v (97)c cc c

x- A x (98)

in which no controller spillover exists. The new control vector will be

shown to be

v G*x (99)
cc

With this general overiew of the tranformation process and its results,

the development of the matrix T will now be discussed.

The major tool used obtaining this result is called the Singular

Value Decomposition (Ref 4). The matrix to be decomposed is B which has
5

dimensions nm x na and can be described by

B = WEVT (100)
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where

W is an (nm x n.) orthogonal matrix of left singular vectors

V is an (na x na ) orthogonal matrix of right singular vectorsa a

and

Z is an (n x na) matrix with the s singular values of B

in the first s entries along the main diagonal and zeroes

in all other positions:

S

E ....... (101)

L0 O

n x nR a

such that

1 0 ...... 0

S 0 0 2 (102)

s

The total number of singular values present is equal to the rank of the

B matrix, and they are all non-negative. Assuming B is of full rank, thens s

s mi (n a , M).

By partitioning, the W matrix can be defined by

W W] (103)

where

WU is &.i nU x m atrix of left singular vectors associated

with the non-zero singular values
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W is an na x r matrix of left singular vectors associatedr

with the zero singular values

and

s + r - n (104)m

Similarly, by partitioning, the V matrix can be defined by

V - V V (105)s p

where

V is an s x na matrix of right singular vectors associated

with the non-zero singular values

V is a p x na matrix of right singular vectors associatedpa

with the zero singular values.

and

s + p - n (106)a

Remembering the V matrix is orthogonal and noting then that

V V 0 (107)

the decomposed matrix may be written as

BT-WV Tv B V -0 (108)
s 5 s p s p

which leads to the conclusion that the transformation matrix desired is

given in the matrix of right singular values associated with the zero

singular values:

T - V (109)

where T 0 0.

Once the transformation matrix is found, implementation is relatively

simple. Equation 94 defined a as the new control input vector. This

is now given as
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* G* x (110)

The G* matrix is found in the same manner as in the Modal Control section

£

of Chapter III in which

G*in-R* B*' S(1)
i i i i

where

R* TR T Ri T (112)

Ri is the positive definite weighting matrix in Eq 33

B* - B T (113)
i i i

and Si is the solution to the matrix Riccati equation:

S A + A T S - S B* R*-l B*T S + Q 0 (114)

Simple manipulation of Eq 111 will show that the transformed gain matrix is

finally given by

O = T G (115)
i i i

Substitution of this back into the state equations yields a closed loop

system which is block triangular with no control spillover.

This technique may be paralleled to obtain a r transformation matrix

for the observation gain to eliminate observation spillover. Substituting

CsT for B, Kt for G and r for T will give the same results with r equal

to V p. Ohterwise, a new derivation using Cs and K will give the result

that the observation gain transformation matrix r is equal to the

transpose of the matrix Wr of left singular vectors associated with the

zero singular values of Cs. Here, as alluded to earlier, the number of

sensors must be greater than the number of modes to be suppressed.
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V. Computer Model

Simplicity and flexibility were prime considerations in the develop-

ment of the computer programs. The general format given by Miller was

followed as it provided a very simple progression of logic.

Two programs, using the same logic, were created. The same control

techniques are applied, however, the spillover ilimination schemes used

are different. One provides decoupled control by neducing the closed

loop state equation matrix, given in form by Eq 49, to an upper block

triangular form. The other reduces the matrix to a lower triangular

form. It was deemed unnecessary to combine the two into one program with

an input selecting one or the other since the eigenvalue results provided

by both programs are identical. In fact, by renumbc-Aig the controllers

in the spillover elimination portion of one program, the opposite trans-

formation is achieved. For example, in the upper crinagular three controller

system, the spillover terms to be suppressed are given in the first column

of Table VIII. By invecting the first column subscripts such that 1, 2,

3 becomes 3, 2, 1, it can be seen that the resulting spillover terms are

identical to those in the second colum for a lower triangular transforma-

tion. The subscript inversion is equivalent to renmbering the controllers

in the transformation portions of the program. For this reason, only the

program for the upper block triangular controlled system Is presented.

This is listed in Appendix C. The subroutines which support this program

are given in Appendix D. Several other subroutines are called but not

listed. These are provided by the International Mathematical and

Statistical Library (IDSL).

Since program flexibility is desired, once the dal data is loaded,

the program is designed to make any nmber of runs with different para-

49



r
snters for each run. The parameters that may be varied by the operator

include: using a three or a four controller system, which nodes are

assigned to each controller, what control and observer weighting values

to assign to each node, and what initial system damping ratio is applied.

The program may read the input data from initialization assignments

within the program or from a permanent data file. In either case, the

program operates as if it were interactive by prompting for input and

then echoing the data read in. Th's makes the output very easy to interpret

by allowing the user to trace the computir's progress through the execu-

tion of the program.

The program is initialized by inputting the number of controllers

desired and then the number of modes in each controller. If three con-

trollers are used, the number of residual modes will be requested, other-

wise the fourth controller system is run without residuals. Next the

number of actuators and sensors are input, along with the modal damping

ratio C. For the models studied, the sensors, actuators and open loop

damping applied were obtained from previous studies. CSDL 1 was tested

with six actuators, six sensors, and a damping ratio of 0.005 (Ref 7),

and CSDL 2 was tested with twenty-one actuators, twenty-one sensors,

and a damping ratio of 0.01 (Ref 10). The program will then read from

a permanent file the matrix (9TD) of modal amplitudes at each actuator

location, followed by the transpose of the matrix of nodal amplitudes at

each sensor location. In this study, these two matrices are identical

since colocated pairs of actuators and sensors are employed. The sensor

nodal amplitude matrix is input in transposed form so that the matrix

for a colocated system may be copied directly from the actuator modal

amplitude W-.rix. However, these are left as separate entries in the

50

gi



6.

event the actuators and sensors are not colocated. Finally, the modal

frequencies are read in from the permanent file. After this preload of

data, the desired run is made by specifying which modes are to be con-

trolled by each controller and which modes are to be left as residuals,

along with the desired control and observer weighting values for each

mode. Additional runs may be made in the same job by specifying

different modal arrangements, weighting assignments or controller

configurations.

Program execution actually begins with the formation of the A, B,

C and weighting matrices for each controller. This is conveniently done

by subroutines which read the required data for the modes specified. These

subroutines allow the operator to change the size of the controllers as

needed simply by specifying the number of modes to be placed in each

controller.

Once the initial matrices are formed, the control and observation feed-

back gain matrices, Gi and Ki respectively, are determined using a series

of subroutines which generate a numerical solution to the matrix Riccati

equation. These sophisticated routines were created by [leinman (Ref 11)

and so are known as the Kleinman routines. The Gi and Ki matrices, along

with the paramter matrices, A, B, and C, are then combined to form the

closed loop system matrix, as given in form by Eq 49. This particular

program develops the three controller system with residuals as in Eq 67,

but unlike Eq 73, doem not include residual terms in the four controller

systems.

The eigenvalue analysis of the system is performed next, making use of

the IOML routine EIGE which determines the eigenvalues of real non-symam-

tric mtrices. First, the eigenvalues of the overall system matrix are
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generated to show the stability of the full system. Then the eigenvalues

of the A + BC and A - KC matrices for each controller are found. These

values demonstrate the effectiveness of the individual controller and

show which modes were affected most. Last, for the residual modes,

if any, the eigenvalues of the A residual matrix are given.

Spillover elimination is the next step in the control algorithm. This,

too, varies with controller configuration, but also varies with the form of

triangularization selected. The 3 or 4 controller variation is accomoda-

ted by the program, bat the type of triangularization selected determines

which of the two programs is used. This selection is more a matter of

operator preference than system requirement, though, since the upper and

lower block triangular reductions yield results identical to seviral deci-

mal places. Regardless of the program selected, the spillover elimination

is a rather lengthy portion of the program. The modes to be suppressed are

formed into non-zero B and C T matrices of the form given in Eq 87. The5 5

IHSL routine LSVDF is used to perform a singular value decomposition on these

matrices. By using the left singular vectors associated with the zero

singular values of Bs and CTs , the transformation matrices Ti and ri are

formed. The program then loops back with the transformation matrices and

these are applied as discussed in Chapter IV to create new gain matrices,

G* and K*. A new closed loop system, which has the selected block trian-

gular form, is generated and the eigenvalue analysis is repeated. In this

analysis, all of the individual controller eigenvalues should be matched

by identical eigenvalues in the overall closed loop system, whereas, in the

first analysis there may be minimal correlation, depending on system

coupling.
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The difference in sizes of the two models examined using these pro-

grams demonstrate, to some extent, the high degree of flexibility of the

control method applied. The only change that needs to be made to adapt

the method for another structure in the basic matrix dimensioning in the

program. Nothing else has to be altered, as long as the system model

can be defined by

x - Ax + Bu (116)

and

i - Ci (117)

as discussed in Chapter III. Thus, the ease of application of the control

method heretofore described can be seen. Now, the performance of control

method will be examined using the programs' eigenvalue analysis results.
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VI. Investisation

Control of a large flexible space structure is a complicated task that

is best taken one step at a time. Therefore, a systematic, building-block

approach was used to conduct the study. Miller's work concentrated on one

and two controller systems. This investigation is the next logical step in

the process, concentrating on the three and four controller systems.

Outline

The Initial phase of this study concentrated on the control of the

CSDL 1 model using three controllers with no residual terms. The first

eight structural modes were used in this analysis, and the control weight-

ing matrix was fixed at Q-20 rI .
Next, the residuals were added to the system, utilizing the last four

structural modes of th-i CSDL 1 model. With this, the full twelve mode

model was implemented.

The residuals were then incorporated into a controller to form a

four controller system without residuals. Again, the full twelve mode

model was used to test the new system.

Once satisfactory results were obtained using the CSDL 1 model,

the program was expanded in dimensions to accomodate the CSDL 2 model.

A twelve node subset of the modeled modes was used for this seget of

the study. The selection of this subset of modes will be explained in

the next section. Since twelve modes were used In both models, the in-

crease In dimensions was dictated by the nmer of sensors and actuators

used in the second model. Tberefore, all matrices were expanded to a

minim dinmasion of twenty-one, as can be seen in the dionmstaloig por-

tion of the progron in Appendix C.

(I t we desired to control all twelve m of the CSL 2 model,

therefore, no residual modes were included in this phase of the study.
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Three controllers were used with a control weighting matrix of Q"

20 [ I.

To obtain desired control characteristics, the values of the

control weighting matrix were varied and the resulting eigenvalue move-

ments were observed. Three of the twelve modes are rigid body modes,

therefore the weightings on these modes were varied first, keeping

the value of 20 for all of the flexible modes. Then the values of the

weightings for the flexible modes were varied individually to see what

effect this had on the system's controllability and observability.

Finally, the CSDL 2 model was run using the four controller system.

The control weightings were varied just as in the three controller system

to determine if there were any significant changes in the system's con-

trollability or observability. The results of the preceeding outline

will be presented shortly.

Modal Selection and Grouping

One of the sore difficult tasks in controlling a large space struc-

ture is the determination of which structural modes are to be actively

controlled and which are left as residuals. Factors which affect this

selection process include sensor/actuator placement and alisaat,

controller bandwidths, and control constraints such as line-of-sigh%.

tolerances.

For maultiple controllers, an additional step ae to be taken. This

is the asigment of the modes to be controlled to minfmize the control

effort. Organizing modes into compatible groups can be done by a

simle examination of the angles between the vectors of modal aqplitudes

(the anglee between the rovs of the .TD matrix). Defining these vectors
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as #19 the angles may be found from the equation for the dot product of

two vectors, given by

*i " *j- 1Iipjj cos eij (118)

The modes are then grouped so no two orthogonal modes are in the same

controller. In some cases the grouping of orthogonal modes in the same

controller is unavoidable. Angles smaller than +45 degrees were used

in this study when possible, however, in some cases the limit was

extended to +70 degrees.

CSDL 1. Selection of the modes to be controlled in the first model

was not a difficult task as there are only twelve modeled modes for the

structure. As noted earlier, the first eight modes were originally

selected for active control. The last four were initially left as

residuals, but were later used as controlled modes. Hence, the full

system was eventually controlled with no residual modes. The assignment

of modes to controllers was made based on the relative angle mode angles

given in Table X. The actual groupings are presented case by case in the

next section.

CSDL 2. The selection of nodes for the second model, on the other

hand, was not a simple task. There are well over one hundred catalogued

modes at present, however, only a small subset of the modeled modes

were selected for active control. The first forty -four modes are

generally used to demonstrate the structural behavior and a subset of

twelve modes m selected from these. The specific modes were choe

as a result of a study conducted by Lockheed and sposred by Rome Air

Development Center (Ref 10). This study used a High Authority Control

method and based its modal selection upon the line-of-sight and defocus
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Tale X

RelaCive MAg1es* Betwe4 CSDL 1 Modes

Mode 1 2 3 4 5 6

1 0.00 90.00 90.00 66.40 90.00 90.00

2 90.00 0.00 64.33 90.00 96.61 90.00

3 90.00 64.22 0.00 90.00 85.25 90.0

4 66.40 90.00 90.00 0.00 90.00 90.00

5 90.00 96.61 85.25 90.00 0.00 90.00

6 90.00 90.00 90.00 90.00 90.00 0.00

7 33.23 90.00 90.00 99.63 90.00 90.00

8 90.00 50.12 111.44 90.00 84.38 90.00

9 90.00 147.39 145.07 90.00 77.97 90.00

10 51.52 90.00 90.00 14.88 90.00 90.00

11 90.00 84.91 61.82 90.00 23.47 90.00

12 90.00 108.20 89.58 90.00 11.63 90.00

Mode 7 8 9 10 11 12

1 33.23 90.00 90.00 51.52 90.00 90.00

2 90.00 50.12 149.39 90.00 84.91 108.20

3 90.00 111.44 145.07 90.00 61.82 89.58

4 99.63 90.O 90.00 14.88 90.00 90.00

5 90.00 84.38 77.97 90.00 23.47 11.63

6 90.00 90.00 90.00 90.00 90.03 90.00

7 0.00 90.00 90.00 84.75 90.00 90.00

8 90.00 0.00 97.28 90.00 92.36 92.83

9 90.00 97.28 0.00 90.00 98.79 68.88

10 84.75 90.00 90.00 0.00 90.00 22.09

11 90.00 92.36 98.79 90.00 0.00 30.09

12 90.00 92.83 68.88 22.09 30.09 0.00

*all angles In degrees
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Table IX

Relative Angles* Between CSDL 2 Modes

Mode 4 5 6 7 12 13

4 0.00 89.09 90.00 90.01 90.09 123.20

5 89.99 0.00 67.47 175.39 116.85 90.05

6 90.00 67.47 0.00 115.31 0.00 89.99

7 90.00 175.39 115.31 0.00 60.67 89.69

12 90.00 116.85 104.01 60.67 0.00 89.69

13 123.20 90.05 89.99 39.95 89.69 0.00

17 107.48 89.97 90.04 90.02 90.02 61.22

21 90.05 106.57 116.99 73.19 102.77 90.07

22 90.01 116.23 91.57 66.49 68.57 89.87

28 39.16 87.89 89.41 92.45 96.61 104.90

30 81.12 87.94 89.27 92.35 95.63 73.29

Mode 17 21 22 24 28 30

4 104.48 90.05 90.01 90.01 39.16 81.12

5 89.97 106.57 116.23 90.16 87.89 87.84

6 90.04 116.99 91.57 80.13 89.41 89.27

7 90.02 73.19 66.49 90.68 92.45 92.35

12 90.01 102.77 68.57 111.87 96.61 95.63

13 61.22 90.07 89.87 90.15 104.90 73.29

17 0.00 89.91 90.15 89.96 80.56 127.80

21 89.91 0.00 93.88 38.05 93.50 93.10

22 90.15 93.88 0.00 103.22 90.51 90.74

24 89.96 38.05 103.22 0.00 94.15 93.50

28 80.56 93.50 90.51 94.15 0.00 89.82

30 127.80 93.10 90.74 93.50 89.92 0.00

*all angles in degrees
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equations given by a TRW study (Ref 12). The line-of-sight and de-

focus algorithm is presented in Appendix E.

The modes used in this investigation contain three rigid modes--

labeled 4, 5, and 6--and 9 flexible body modes--labeled 7, 12, 13,

17, 21, 22, 24, 28, and 30. These modes were selected by Lockheed as

having the greatest impact on line-of-sight and defocus, based on che

equations given in Appendix E, and so were adopted for this study.

Applying the relationship given by Eq 118, the angles between the

twelve modes are given in Table XI. The actual groupings selected will

be presented case by case in the following section.
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VII. Results

For the CSDL I model, the open loop damping applied was 0.005.

Earlier studies of the model showed that a closed loop damping of 0.10

on each mode was needed to meet pointing requirements. Therefore, a

minimum of ten percent damping became the desired parameter for accept-

able system performance. Due to unresolved problems with the computer

subroutine for a time response, line-of-sight performance could not be

evaluated, hence, the closed loop damping is the only numerical perfor-

mance parameter available.

Calico and Miller determined that a control weighting matrix of

Q = 20 [I] was sufficient to meet the ten percent damping require-

ment for one and two controller systems. This Q matrix was adopted as an

initial value in this study.

From Table X, the most favorable modal groupings for a three con-

troller are given by

Group 1: 2, 3,8,9

Group 2: 5, 6, 11, 12

Group 3: 1, 4, 7, 10

Mode 6 was found to be mutually orthogonal with every other mode. Its

placement is based on the recommendation that the last four modes be

treated as residuals. Without mode 6, the second group would corsist of

mode 5 alone. Therefore mode 6 is placed in the second group and the

resulting groupings are

Group 1: 2, 3, 8

Group 2: 5, 6

Group 3: 1, 4, 7
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Residuals: 9, 10, 11, 12

The first test was performed without residuals to insure that the

transformation portion of the program would successfully block triangular-

ize the system through spillover elimination. The resulting eigenvalue

analysis is presented in Table XII. The overall system eigenvalues

are given and are arranged by their respective controller assignments.

The individual modes may be identified by the imaginary parts of the eigen-

values, as these are approximately equal to the modal frequencies. This

particular system was stable and very well damped (average damping of

thirty percent) before transformation. After the transformation, stabi-

lity was maintained, as expected, and there was a notable loss in damping

on three modes. There was an overall movement of eigenvalues to the

right, meaning after the transformation there was less system stability.

Nevertheless, the transformation succeeded in reducing the system to a

block triangular form, which was the intent of this step.

It should be pointed out that the results given were obtained using

an upper block triangular transformation. A lower block triangular trans-

formation yields the same overall system results, but the controller

eigenvalues are presented differently. When examining the A + BG and

A - KC eigenvalues for each controller, those eigenvalues for A +BG

in an upper triangular system are equal to those for A - KC in a lower

triangular system. Likewise, those eigenvalues for A - KC in an upper

triangular system art equal to those for A + BG in a lower triangular

system. Table XIII presents the separate controller eigenvalues for

the system given in Table XII. The upper and lower block triangular

systems are presented side-by-side to show controller relationships.
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Table XII

CSDL 1 Overall Eigenvalue Analysis - 3 Controllers

Modal Assignment

Controller 1: 2, 3, 8 Controller 3: 1, 4, 7

Controller 2: 5, 6 Residuals: None

Overall System Eigenvalues

Before Transformation After Transformation

Controller 1

-1.5814 + 5.591861 - 0.283 -1.4503 + 5.526401 -0.262

-1.4394 +5.36998i - 0.268 -1.5096 T 5.502781 -0.274

-.82780 +2.995711 - 0.276 -0.0895 +; 2.96361i1 0.030
-1.0125 +2.720861 - 0.372 -0.9389 T 2.840611 c 0.319
-.44731 +1.506291 - 0.297 -0.4183 +1.447051 - 0.289
-.54119 1 .395841 - 0.387 -0.4969 1 .442171 - 0.345

Controller 2

-.16127 + 4.909651 - 0.328 -1.6127 + 4.909651 - 0.328
-1.6126 T 4.909621 - 0.328 -1.3253 T 4.876321 - 0.272
-1.2041"+ 3.837021 - 0.314 -0.7383 T 3.872761 - 0.191
-1.3672 T 3.488991 - 0.392 -0.0192 T 3.848341 - 0.005

Controller 3

-.15673 + 5.460781 - 0.287 -1.5672 + 5.460751 - 0.287
-1.5679 5.460751 - 0.287 -1.3751 +5.45811 - 0.252
-1.0420~ 3.426331 - 0.304 -0.5452 +3.558661 - 0.153
-1.0420 +3.426321 - 0.304 -1.0419 +3.426321 - 0.304
-.34014 T 1.163961 - 0.292 -0.1766 T 1.169331 - 0.151
-.34014 + 1.163961 - 0.292 -0.3401 + 1.163961 - 0.292
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Table XIII

Upper and Lower Triangular Tranasformat ion

Comparison of Controller Elgenvalues

Modal Assignment

Controller 1: 2, 3, 8 Controller: 1, 4, 7

Controller 2: 5, 6 Residual: None

Transformed Controller Eigenvalues

Upper Block Triangular Lower Block Triangular

A +BG 1 A +DG 1

-1.4503 + 5.526401 -1.5096 + 5.502781
-0.0895 i2.963611 -0.9389 T 2.840611
-0.4183 j:1.447051 -0.4970'; 1.442181

A- KC 1 A - KC 1

-1.5096 + 5.502781 -1.4503 + 5.526401
-0.9389 2.840611 x-0.0895 +2.963611

-0.4970 _1.442181 -0.4182 +1.447051

A + BG 2 A + B02

-1.3253 + 4.876321 -1.6127 + 4.909641

-0.7383 T 3.872761 -0.0192 T 3.848341

A - KC 2 A - KC 2

-1.6127 + 4.909641 ><-1.3253 + 4.876321
-0.0192 + 3.848341 -0.7383 + 3.872761

A +80G3 A +303

-1.5672 + 5.460751 -1.3751 + 5.458111
-1.0419 + 3.426321 -0.5452 + 3.558661
-0.3401 + 1.163961 -0.1766 + 1.169331

A - KC 3 A- KC 3

-1.3751 + 5.458111 ><-1.5672 + 5.460731
-0.5452 + 3.558661 -1.0419 + 3.426321
-0.1766 + 1.169331 -0.3401 + 1.163961
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Next, the four residual modes are added to complete the model. It

was desired to see the movement of the residuals, if any, caused by the

spillover elimination. The eigenvalue analysis for this step is pre-

sented in Table XIV. As before, there is a slight sacrifice in the closed

loop damping during the transformation, but only two modes exhibited

losses below the ten percent mark. The first of these is due to a

decrease in controllability in the first controller, which is expected

to occur. The second is believed to be a result of the pairing of modes

5 and 6 in the same controller. This is supported b,, several different

groupings with and without modes 5 and 6 together. The drastic reduc-

tion in the controllability and/or observability in mode 5 is not seen

when nodes 5 and 6 are in separate controllers. Therefore, this indi-

cates a bad grouping of modes, but system stability was not totally

sacrificed. Overall, the requirement of ten percent damping in all

modes was met. The residuals, although less stable, did not become

unstable, and maintaintd the 0.005 damping originally applied to the

system.

To maintain the parallel examination, the same modal grouping was

then controlled using four controllers. As before, damping applied

was 0.005 and the control weighting matrix was Q - 20 [ i] - The

resulting eigenvalue analysis is given in Table XV. Again, a loss in

damping occurs during transformation for the first three controllers,

but the fourth controller actually show some improvement in damping

on the modes which were previously residuals. Also, for the first time

during this study, the damping on one mode in the first controller

dropped below the original open loop damping, this being mode 3. The

i li I I 9Ii.. I . . . r Ii, i . ..



Table XIV

CSDL 1 Overall Elgenvalue Analysis - 3 Controllers

Modal Assignment

Controller 1: 2, 3, 8 Controller 3: 1, 4, 7
Controller 2: 5, 6 Residual: 9, 10, 1, 12

Overall System Eigenvalues

Before Transformation After Transformation
Controller 1

-1.5082 + 5.608771 C - 0.269 -1.3875 ± 5.694181 ; 0.244
-1.1542 + 5.364101 - 0.282 -.15842 + 5.362871 C - 0.295
-1.2334 F 3.187031 C - 0.387 -0.0903 2.960691 C - 0.030
-1.1119 + 2.601291 - 0.427 -0.9482 ± 2.813581 ; 0.337
-0.3482 T 1.58607. 4 " 0.219 -0.3555 ± 1.526761 ; 0.233
-0.6579 + 1.350471 C " 0.487 -0.5482 4 1.383561 - 0.396

Controller 2

-1.6126 + 4.909651 C " 0.328 -1.6127 ± 4.909651 C - 0.328
-1.6126 + 4.909621 C - 0.328 -1.3253 _ 4.876321 C - 0.339
-1.0697 + 4.013421 C - 0.267 -0.0192 ± 3.843841 C - 0.005
-0.8339 + 3.772431 C - 0.221 -1.0692 ± 3.353191 C 0.319

Controller 3

-1.5124 + 5.512871 - 0.274 -1.6097 + 5.522971 C 0.291
-1.6183 + 5.412921 C - 0.299 -1.3595 + 5.388131 C f 0.252
-1.4846 + 3.404981 C 0.436 -0.7383 + 3.872761 C 0.191
-0.6912 + 3.202521 C - 0.216 -0.5112 ± 3.664041 C 0.140
-0.2689 + 1.220061 C 0.220 -0.3381 ± 1.187361 C 0.285
-0.4152 + 1.123041 C 0.370 -0.1719 + 1.137051 C 0.151

Residual

-0.0701 + 13.96481 - 0.005 -0.0699 ± 13.96641 C - 0.005
-0.0573 + 10.89781 C - 0.005 -0.0548 1 l0.92311 C " 0.005
-0.0679 + 10.25741 C - 0.005 -0.0517 + 10.30051 C - 0.005
-0.0768 T 8.883121 - 0.009 -0.0451 + 8.929171 " 0.005
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Table IV

CSDL 1 Overall Eigenvalue Analysis - 4 Controller

Modal Assignments

Controller 1: 2, 3, 8 Controller 3: 1, 4, 7

Controller 2: 5, 6 Controller 4: 9, 10, 11, 12

Overall System Eigenvalues

Before Transformation After Transformation

Controller 1

-1.5834 +5.793201 C - 0.273 -1.4838 +5.62.1271 C 0 0.264
-1. 4901 +5.557741 - 0.268 -1. 4925 +5.345871 C 0.279
-1.1962 +3.375961 C- 0.354 -0.0120 ±3.851571 ; 0.003
-1.1160 + 2.783591 C 0.401 -0.9282 ±2.790361 C 0 0.333
-0.3421 +1.666201 C 0 0.205 -0.3831 ±1.595111 C 0 0.240
-0.6071 +1.379051 C 0.440 -0.4653 ±1.424341 C m 0.327

Controller 2

-1.6127 ±4.909651 w 0.328 -1.6126 ±4.909651 m 0.328
-1.6126 + 4.909641 c - 0.328 -1.6126 + 4.909601 C- 0.328
-1.0361 + 5.150581 C- 0.201 -0.0192 + 3.848341 C- 0.005
-1.0151 +; 4.2"4181 - 0.239 -0.3599 T 3.607571 C a 0.100

Controller 3

-1.6365 + 5.393571 C - 0.303 -1.3751 + 5.45811i C - 0.252
-1.7358 T 5.164751 C - 0.336 -1.5566;+ 5.455551 C- 0.281
-1.3556 T 3.644651 C - 0.372 -0.2324 T 3.559321 C- 0.065
-0. 9042 T3. 618431 C - 0.250 -0.5452;+ 3.558661 C m 0.153
-0.2572 T1.244191 C - 0.207 -0.1766 1 .169331 C - 0.151
-0.4006 T 1.126511 C 0.356 -0.2668 1.166711 C - 0.229

Controller 4

-0.2441 + 13.74051 C -0.018 -0.1137 +13-94101 C - 0.008
-1.2226 + 11.05411 c U 0.111 -0.9592 +10.9018, C - 0.088
-1.5415 + 10.36221 C - 0.149 -0.2197 +10.87341 C U 0.020
-0.5054 + 10.10031 C - 0.050 -0.0515 +10. 30351 C 0.005
-0.8318 + 9.520681 C - 0.087 -1.2352 +10.23071 C - 0.121
-1.6044 + 8.979221 C. 0.179 -1.5900 ±9.158701 C - 0.174
-0.8934 +8.084211 c - 0.110 -1.0199 ±8.328721 C U 0.122



effects of this cannot be determined until a time history of system

response can be generated. The other mode seriously affected was mode

5 again. This is an expected result, as mentioned earlier. However,

the overall results from this four controller run were surprising, since

the requirement was specified in an earlier derivation that the number

of modes being suppressed could not exceed the number of sensors avail-

able. Decoupling controller 1 in this case involves suppressing nine

modes with a six sensor system. This is the reason for the total loss

in damping and probably accounts in large part for the overall decrease

in closed loop damping. In all other modal groupings, the four con-

troller system failed to stabilize the system and extremely large, posi-

tive eigenvalues were given in the overall system analysis. This parti-

cular run was successful only on a chance compatible grouping.

For the CSDL 2 model, the open loop damping ratio applied was

0.010, twice that for the CSDL 1 model. Since a multiple controller had

never been applied to this model prior to this study, an initial control

weighting matrix of Q - 20 [ I '] was used for a first "feel" at

controlling the system. The modal angles from Table X1 give the follow-

ng grouping for a three controller system, controlling all twelve modes:

Group 1: 5, 6, 7, 21

Group 2: 4, 13, 17, 30

Group 3: 12, 22, 24, 28

(recalling that the mom- selected are not sequential). Node 28 is

similar to mode 6 in the first model in the sense that It s mutually

orthogonal to all except mode 4. Therefore, it is randomly placed with

the third grouping to balance the modal distribution. Control of all
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twelve modes is desired, therefore, there will be no residual modes in

the study of the second model. As in the first model, we will try to

achieve a closed loop damping of ten percent on all modes. This is

a stple starting point for testing the application of a multiple con-

troller to the given model and is in no way definitive as to controller

success or failure.

The eigenvalue analysis for the first run using the modal group-

ings above and Q - 20 [ i] J is given in Table XVI. Although no

inherent instabilities exist, it is evident there is an excessive

amount of damping on the rigid body modes (over one hundred percent)

and no increase at all in the flexible modes. In some instances, there

Is even a decrease In the damping during the transformation, but as

can be seen, no mode vent below the initial open loop damping of one

percent.

The next step was to equalize the damping between the rigid and

flexible modes. This was atempted by raising the control weighting

on the flexible nodes and decreasing it on the rigid body modes. In

the untransformed closed loop system, there is a symoetry which exists

only as a result of the colocation of sensors and actuators. This

symmetry is apparent in the matrix Riccati solutions to Ai + BiG 

and AI - KiCI, in the state feedback matrices G i and Ki and in the

controller eigenvalues of Ai + BiGi and Ai - KIC I . However, when the

control weightings are varied as described, this sy metry is completely

lost in those controllers containing both rigid and flexible modes.

This loss of symetry is not understood, since the weighting matrices

are identical for both control and observation calculations. It is
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Table XVI

CSDL 2 Overall Elgenvalue Analysis - 3 Controllers

qt " 20

Modal Assignments

Controller 1: 5, 6, 7, 21 Controller 3: 12, 22, 24, 28
Controller 2: 4, 13, 17, 30 Residual: None

Overall System Eigenvalues

Before Transformation After Transformation

Controller 1

-.06463 + 6.107291 C = 0.011 -.06305 + 6.107131 - 0.010
-.06495 6.106961 C - 0.011 -.06479 4 6.107111 - 0.011
-.04041 0.717351 C - 0.056 -.03367 + 0.716161 - 0.047
-.04187 0.715031 c - 0.058 -.04115 + 0.716151 - 0.057
-.24749 : 0.242111 c - 1.022 -.25463 ; 0.239891 - 1.061
-.26163 7 0.238291 c - 1.098 -.24170 T 0.228841 - 1.056
-.20131 T 0.199561 C - 1.009 -.20632 + 0.19814i - 1.041
-.21119 T 0.196891 C - 1.072 -.18949 T 0.183101 - 1.035

Controller 2

-.25049 + 25.04831 - 0.010 -.25049 + 25.04831 - 0.010
-.25049 + 25.04831 - 0.010 -.25049 + 25.04831 4 - 0.010
-.05144 + 5.121381 - 0.010 -.01543 + 5.121381 ; - 0.010
-.05144 + 5.121381 - 0.010 -.05144 + 5.121381 C - 0.010
-.08045 + 3.745181 C - 0.021 -.07811 + 3.745021 ; - 0.021
-.08042 + 3.745181 c - 0.021 -.08044 + 3.745161 - 0.021
-.29226 + 0.271471 c - 1.077 -. 28999 + 0.268191 - 1.081
-.29512 + 0.270791 C - 1.090 -.22818 + 0.217131 4 - 1.051

Cuntroller 3

-.21691 + 21.69031 C - 0.010 -.21691 + 21.69031 C - 0.010
-.21691 + 21.69031 C - 0.010 -. 21691 + 21.69031 C - 0.010
-.14844 + 11.14031 c - 0.013 -.12045 + 11.1403± c - 0.011
-'14763 + 11.13951 4 - 0.013 -.14801 + 11.13991 C - 0.013
-.07731 " 7.280261 C 0.011 -.07444 T 7.280231 C - 0.010
-.07710 + 7.280071 C - 0.011 -.07717 + 7.280201 - 0.011
-.04368 T 3.501921 ; - 0.012 -.03802 T 3.501731 - 0.011
-.04277 ; 3.50111± C - 0.012 -.04313 T 3.501681 C - 0.012
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believed to be a numerical incongruity in the matrix Riccati solution

subroutine, MRIC (Appendix D), but this is not confirmed.

To bypass this problem until its effects on the system performance

can be determined, the modal groupings were rearranged to combine the

rigid bbdy modes into one controller. As a result, the groupings became:

Group 1: 4, 5, 6

Group 2: 7, 13, 17, 21, 30

Group 3: 12, 22, 24, 28

The control weightings could then be adjusted freely for the flexible

and rigid body modes because they are totally decoupled. The rigid

body mode control weighting was adjusted from 0.02 to 20 by orders of

magnitude and the flexible body mode control weighting was adjusted

from 20 to 15000 by approximate doubles of the previous value. A repre-

sentative eigenvalue analysis is presented in Table XVII. The values

of q are presented such that

qiQ i.*'* j (119)

There is an unstable mode present with this modal grouping and it

exists only within the overall system since the individual controllers

are stable. But the transformation succeeded in stabilizing the *ode and

even increased the damping on the mode. Damping on two modes achieved

the ten percent desired (modes 7 and 13), not to mention the rigid body

modes, all of which are critically damped. Several other modes had signi-

ficant gains in their dampiag (modes 12, 21, 22 and 24). Bovever, other

modes sacrified some of their damping during the transformation, therefore
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Table XVII

CSDL 2 Overall Eigenvalue Analysis - 3 Controllers

qrigd ' 2.0 qflexible 1000

Modal Assignments

Controller 1: 4, 5, 6 Controller 3: 12, 22, 24, 28
Controller 2: 7, 13, 17, 21, 30 Residuals: None

Overall System Eigenvalues

Before Transformation After Transformation
Controller 1

-.16355 + 0.649151 - 0.252 -.16093 + 0.156911 1.026
-.58333 0.579451 - 1.007 -.14062 T 0.137921 1.020
-.11817 0.244371 - 0.484 -.11454 T 0.113071 € 1.013
-.16155 + 0.156631 - 1.031 -.10480 T 0.103671 1.011
-.14044 " 0.137901 - 1.018 -.08908 T 0.088381 [ 1.008
-.11469 + 0.133241 - 1.013 -.00248 + 0.002481 € 1.000

Controller 2

-.25049 + 25.04831 - 0.010 -.25050 + 25.04831 C - 0.010
-.25049 + 25.04831 - 0.010 -.25050 + 25.04831 - 0.010
-.14827 + 6.128691 - 0.024 -.12806 + 6.106161 C - 0.021
-.18024 + 6.092721 - 0.030 -.14468 T 6.105811 - 0.024
-.06326 + 5.122681 c- 0.012 -.06036 T 5.121281 - 0.012
-.05924 + 5.118961 - 0.012 -.06072 + 5.121261 C - 0.012
-.60535 + 3.799601 - 0.159 -.42295 T 3.725171 - 0.114
-.40053 + 3.570231 C- 0.112 -.48612 + 3.718481 C - 0.131
-.60203 + 1.056931 - 0.570 -.23565 + 0.727251 ; - 0.324
+.47643 + 0.676371 c - - -.02015 + 0.716121 C - 0.028

Controller 3

-.21691 + 21.69031 c; = 0.010 -.21691 + 21.69031 - 0.010-.21691 + 21.69031 c - 0.010 -.21691 + 21.69031 C - 0.010
-.72335 + 11.13831 c - 0.065 -.34237 + 11.13581 ; - 0.031

-.67321 + 11.08391 c - 0.061 -.69781 + 11.11941 C - 0.063
-.21047 + 7.290881 C - 0.029 -.13175 + 7.279451 C - 0.018
-. 18001 + 7.258771 C - 0.025 -.19501 + 7.278091 C - 0.027
-. 21479 + 3.524611 - 0.061 -. 11033 + 3.500431 C - 0.032

-. 15069 + 3.445141 C - 0.044 -.18141 + 3.497921 - 0.052
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there is a trade-off for the added gain. Regardless of the weighting

factor applied, modes 28 and 30 never achieved any gain in damping.

Table XVIII lists the eigenvalues of each controller for the run.

The instability shown in the overall system eigenvalues, Table XVII, is

absent in the individual controller. This is a perfect example of

the point mentioned repeatedly in Chapter III that stable controllers

do not insure a stable system. Spillover terms do have a noticeable

effect. This situation might never have been seen in this study if the

modal groupings had not been changed.

Other items of note from Table XVIII include the display of con-

troller symmetry mentioned earlier. In the untransformed system the

control and observation pcrtions of each controller yield identical

eigenvalues. The loss o; this similarity led to postponing the use of

different control weightings for each mode. Also visible, in the trans-

formed system, is the loss of controllability in Controller 1 and the

loss of observability in Controller 3. This is characteristic of all

multiple controllers. If a lower block triangular transformation were

used, the loss of controllability would be in Controller 3 and the loss

of observability would be in Controller 1. This may be seen by the rela-

tionship of the two systems demonstrated earlier in Table XIII. In any

case, the first and last controller in any multiple controller will exper-

ience a loss of controllability or observability.

The final step was to apply the four controller system and, again,

attempt to achieve ten percent closed loop damping on all modes. It

was deemed best to keep the rigid body modes in one controller and

distribute the remaining modes to the last three controllers. Since
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Table XVIII

CSDL 2 Controiler Eigenvalue Analysis - 3 Controllers

qrigid = 2 qflexible 1 1000

Modal Assignments

Controller 1: 4j 5, 6 Controller 3: 12, 22, 24, 28

Controller 2: 7, 13, 17, 21, 30 Residual: None

Controller Eigenvalues

Before Transformation After Transformation

A + BG 1 A + BG 1

-.16093 + 0.156911 -.10480 + 0.103671
-.14062 0.137921 -.08908 + 0.08838i
-.11454 ?0.113071 -.00248 7 0.002481

A - KC 1 A - KC 1

-.16903 + 0. 156911 -.16093 + 0.156911
-.14062 70.137921 -.14062 70.137921
-.11454 : 0.113071 -.11454 7 0.113071i

A + BG 2 A + BG 2

-.25050 + 25.04831 -.25050 + 25.04831
-.16457 6.105331 -.12806 7 6.106161
-.06103 + 5.121261 -.06072 5.12126i
-.50479 + 3.716321 -.48612 + 3.71848L
-.28750 ; 0.73187i -.23565 7 0.727251

A - KC 2 A - KC 2

-.25050 + 25.0483 -.25050 + 25.04831
-.16457 ; 6.105331 -.14468 + 6.105811
-.06103 + 5.121261 -.06036 + 5.121281
-.50479 + 3.7163Z, -.42295 + 3.725171
-.29750 + 0.731871 -.02015 7 0.71612

A + BG 3 A + BG 3

-.21691 + 21.69031 -.21691 + 21.69031
-.69781 + 11.11941 -.69781 7 11.11941
-.19501 + 7.27809i -.19501 7 7.278091
-.18i41 T 3.497911 -.18141 + 3.49792L

A- KC 3 A- KC 3

-.21691 + 21.69031 -.21691 + 21.6903L
-.69781 + 11.11941 -.34237 7 11.13571
-.19501 + 7.278091. -.13175 7 7.279441.
-.18141 + 3.497911 -.11033 7 3.50043.
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Table XIX

CSDL 2 Overall Eigenvalue Analysis - 4 Controllers

q rigid 2.0 q flxil 500

Modal Assignments

Controller 1: 4, 5, 6 Controller 3: 12, 22, 24, 28

Controller 2: 13, 17, 30 Controller 4: 7, 21

Overall System Eigenvalues

Before Transformation After Transformation

Controller 1

-.4836 + 0.617861 - 0.783 -.1609 + 0.156911 - 1.025
-.1619 + 0.452021 - 0.358 -.1406 +i 0.137921 - 1.019
-.1183 + 0.177301 - 0.667 -.1145 T 0.113071 - 1.013
-.1616 + 0.156671 - 1.031 -.1048 + 0.103671 - 1.011
-.1399 + 0.138151 - 1.01 -.0891 + 0.088381 - 1.008
-.1150 + 0.113531 - 1.012 -.0025 + 0.002471 - 1.000

Controller 2

-.2505 + 25.04831 = 0.010 -.2505 + 25.04831 = 0.010
-.2505 + 25.04831 = 0.010 -.2505 + 25.04821 - 0.010
-.0572 + 5.121951 - 0.011 -.0560 + 5.121331 - 0.011
-.0556 + 5.12042i = 0.011 -.0560 + 5.121321 c - 0.011
-.4162 + 3.777561 = 0.110 -.3002 + 3.735471 4 - 0.080
-.2979 + 3.654451 - 0.082 -.3443 + 3.732171 4 - 0.092

Controller 3

-.2169 +21.69031 - 0.010 -.2169 + 2i.6903i - 0.010
-.2169 + 21.69031 4 0.010 -.2169 + 21.69031 - 0.010
-.5136 + 11.14091 - 0.046 -.3791 + 11.13461 - 0.034
-.4861 + 11.1122± - 0.044 -.4795 T 11.1308i - 0.043
-.1546 + 7.285341 - 0.021 -.1345 + 7.27940±1 - 0.018
-.1399 + 7.270241 = 0.019 -.1366 + 7.279361 - 0.019
-.1488 + 3.514131 - 0.042 -.1080 + 3.500491 - 0.031
-.1134 + 3.473691 - 0.033 -.1107 + 3.500421 - 0.032

Controller 4

-.1164 + 6.116561 - 0.019 -.0745 + 6.107011 4 - 0.012
-.1317 + 6.099931 - 0.022 -.1241 + 6.106241 - 0.020
-.4323 + 0.850261 - 0.508 -.2064 + 0.72485±1 - 0.285
-.3671 + 0.632771 - 0.%~80 -.0072 + 0.716041 4 - 0.010
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the three controller application had no residuals, a direct conversion

of the residuals to a fourth controller was not possible, therefore a

little modal rearrangement was in order. To maintain a similarity to

the previous tests, two modes were shifted from the second group to

form a fourth group. The final groupings were then given by

Group 1: 4, 5, 6

Group 2: 13, 17, 30

Group 3: 12, 22, 24, 28

Group 4: 7, 21

Using a control weighting of 2.0 for the rigid body modes and 500 for

the flexible body modes, the overall eigenvalue analys.s for a four con-

troller system are given in Table XIX. As in the pre-ious care, the

rigid body damping was increased for the rigid body modes. In the

flexible modes, no appreciable loss in damping occured, except in the

fourth controller where the expected loss in observability was found.

A blanket ten percent in damping was unachieveable by uniform increases

in the control weighting, again suggesting a reexamination of the modal

groupings. Also, modes 28 and 30 were unaffected by any value of q

from 10 to 15000.
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VIII. Conclusions

This investigation demonstrated the feasibility of using multiple

controllers in maintaining system stability. It was shown that some

closed loop damping was sacrificed in transforming the system to a

block triangular form, however, the effects of that loss have not been

examined. Modal grouping played a very important part in the system

stability achieved and, in the four controller system, allowed an other-

wise uncontrollable configuration (CSDL 1) to be stabilized.

The use of angles between modal amplitude vectors is a convenient

method for initial grouping of modes, but the rank of the B and C

matrices should be examined closely. If they are not of full rank, the

modal groups may not be fully compatible as indicated by zero entries

in the non-zero singular values of the singular value decomposition.

Loss of controllability and observability in the first and last

controllers become more noticeable with the addition of more controllers.

This may be the result of the modal assignments used.

The inability to affect the last two modes of the CSDL 2 model

suggest that the sensor and actuator placement may not be suitable for

controlling those modes. This may be resolved by repositioning the

sensors available or adding sensors.

For those cases involving residuals, the residuals were not ser-

iously destabilized, although their general movement was to become

less stable. This movement to the right is contrary to what was

desired and needs more study.

Overall, the goal of effecting ten percent closed loop damping was

successful on the CSDL 1 model and unsuccessful on the CSDL 2 model,
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* although significant increases were obtained on most modes. Total

controller decoupling was achieved while maintaining controller and

system stability for both models. The performance of the controller,

as wall as could be determined without running a forty-four mode simu-

lation, was satisfactory, but did not meet all expectations.

9.7
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IX. Recommendations

There are several directions that may be taken at this point. The

intent of this study was to examine the application and performance of

three and four decentralized controllers on the CSDL 2 model, using the

CSDL 1 model as a check on the controller algorithm. A re-examination

of the modal assignments is in order to find grouping which are more

compatible. This compatibility may be determined by receiving non-

zero singular values for the singular value decomposition or simply

from the fullness of rank of the Bi matrices. Another direction that

may be taken is to consider adding a sensor specifically for modes 28

and 30 or redistributing the existing sensors to observe these two

modes more directly. These changes are suggested to improve the obser-

vability and controllability of the existing system.

A time history of the controller response would be invaluable at

this time, as this is the major performance criteria. This investigator

was unable to complete such a response. Additionally, the program used

may be examined for means to minimize core memory requirements. Fin-

ally, the controllers may be expanded to run a higher number of modes.

The first forty-four modes are usually used as a fair system representa-

tion. These suggestions expand upon the work done to date.

All of the above are either necessary or desirable. At a minimum,

these should be accomplished before the feasibility of implementing

this system can be fully evaluated.
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Appendix A

CSDL 1 NASTRAN Analysis
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Frequencies and !4ode Shapes

Nominal Case

X = 1.3704 Ix2 - 2.1515 x3 
= 8.7889

1 M 1.1706 w2 = 1.4668 3 2.9646

-2.470E-0 3.998E-O " 6.367E-02"
4.278E-02 2.309E-01 3.677E-02
1.451E-06 -1.489E-01 4.OOOE-01

-1.962E-02 8.328E-02 1.983E-01
3.397E-02 4.808E-02 1.145E-01

O1 -7.213E-02 02 6.812E-02 *3 - 2.009E-01
-3.696E-02 6.999E-02 1.547E-01
4.347E-02 2.252E-02 6.803E-02
4.397E-02 -4.721E-02 9.782E-02

-1.962E-02 5.450E-02 1.362E-01
5. 296E-02 4.936E-02 1.OOOE-01
4.396E-02 -4.721E-02 9.783E-02

A 4 = 12.657 x5 - 14.810 x 6 = 26.516

w4 - 3.5578 5 =  3.8484 6 =  5.1494

2.745E-02 -8.783E-02 1.353E-05
-4.757E-02 -5.070E-02 I.218E-1/
-2.249E-05 -1.298E-01 3.401E- 11
-1.718E-01 3.095E-01 -2.041E-01
2.977E-01 1.786E-01 3.535E-O1

04' -6.816E-05 05 -3.514E-01 *6 - -6.057E-06
-2.512E-01 2.865E-01 -2.041E-01
3.435E-01 1.224E-01 -3.535E-01

-8.190E-02 1.139E-02 1.086E-04
-1.718E-01 2.493E-01 4.082E-01
3.894E-01 1.868E-01 6.802E-10
8.192E-02 1.140E-02 5.065E-10

x7 - 32.216 x 8 - 32.613 A9 a 79.917

w7 =  5.6759 W8 =  5.7108 *9 - 8.9396

-2.661E-02 -2.993E-0" 9.906E-02-
4.606E-02 -1.730E-02 5.720E-02
3.302E-05 8.784E-02 1.728E-01
3.374E-02 4.070E-02 1.075E-01

-5.844E-02 2.359E-02 6.2131-02
3.231E-05,- 3.553E-02 *9-4.953E-01

2.733R-02 2.742E-02 -1.6781-01
-5.481E-02 2.797E-02 -2.191E-01
-4.912E-01 -4.874E-01 -1.1101-02
3.381E-02 3.799E-0w -2.7431E-01

-5.108E-02 9•8081-03 -3.5531-02
4.9061-01 -4.8781-01 -1.1081-02
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A,10 a 106.164 A11 a 119.320 x12 - 195.068

10 a 10.3036 W - 10.9234 w1 2 " 13.9667

-3.3891-03 6.3691-02 3.205E-01
5.8491-03 3.677E-02 1.851E-02

-1.6053-05 9.588E-02 6.438E-02
-2,2861-01 -2.400E-01 -4.0253-01

3.9591-01 -1.3851-01 -2.3241-01
4.963E-05 -2.604E-01 -1.304E-01

11 3.783E-01 'p12 -8.605E-02 13 - 3.203E-01
4.554E-02 3.944E-01 -1.587E-01

-1.470E-02 6.969E-03 -9.277E-03
-2.286E-01 2.984E-01 2.271E-02
-3.048E-01 -2.719E-01 3.568E-01

1.471E-02 6.970E-03 -9.281E-03

0 D Matrix (12 x 6)

Actuator (Sensor)

1 2 3 4 5 6

1 0.0440 -.0440 -.0670 -.0230 0.0230 0.0670

2 -.0690 -.0690 -.0170 0.1120 0.1120 -.0170

3 -.0460 -.0460 -.2710 0.0770 0.0770 -.2710

4 0.2490 -. 2490 -. 0600 0.1890 -. 1890 0.0600
Mode

5 0.3510 0.3510 -.0490 0.1560 0.1560 -.0490

6 0.2890 -.2890 0.2890 -.2890 0.2890 -.2890

7 0.0490 -.0490 -.3690 -.3200 0.3200 0.3690

8 -.0690 -.0690 0.2990 0.3650 0.3650 0.2990

9 0.2310 0.2310 0.2500 -.2290 -.2290 0.2500

10 0.3170 -.3170 -.1500 0.1670 -.1670 0.1500

11 0.2200 0.2200 -.1460 0.1450 0.1450 -.1460

12 0.1140 0.1140 -.0132 0.0248 0.0248 -.0132
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STD Matrix (12 z 21)

Actuator (Sensor)

Mode 1 2 3 4 5 6

4 .004775 .004876 -.04429 0.0 .004775 .004876

5 .000001 .003619 .003618 -. 004642 .000001 -. 003618

6 -. 006023 .000267 .000266 -. 008232 .006023 -. 000266

7 .000026 -. 001570 -. 001533 -. 002816 -. 000026 .001569

12 -.000452 -.000859 -.000903 .010104 .000432 .000869

13 -. 016036 -. 002018 .006244 .000073 -. 016045 -. 002002

17 .000811 -.000616 -.000255 .000002 .000812 .000619

21 -.001659 -.001165 .000520 -.001659 .001649 .001152

22 .000981 -.002849 -.000347 -.001226 .000980 .002859

24 .019403 .005697 .005622 -.017699 .019407 .005625

28 0.0 -.000004 .000001 -.000003 -.000003 -.000005

30 -.000003 .00010 .000015 -.000005 -.000009 .000008

7 8 9 10 11 12

4 .004429 0.0 -.013837 .003015 .002568 -.013837

5 -.003619 .013451 -.000002 .003619 .003618 .000002

6 -.000266 -.003888 -.006023 .000266 .000266 .006023

7 .001532 -.006275 -.000098 -.001565 -.001541 -.000096

12 .000927 -.C,1977 -.000531 -.000880 -.000909 .000536

13 .006278 -.000012 .000644 -.000401 .004628 .000688

17 -.000257 0.0 .000085 -.000550 .000331 -.000086

21 -.000527 .001115 -.001 45 -.0008A7 -.000291 -.006164

22 .003478 .000638 -.000292 -.002955 -. 00354 .000293

24 -. 0056 .001640 .00295. -. 0035"4 .004155 -.002891

21 .OOMsz 0.0 -.OMO8 .OOOO01 -.000004 -.000006

30 .000016 0.0 -. 000004 .000016 .000016 -. 000004

. . ...... . .t,



Actuator (Sensor)

Mode 13 14 15 16 1.7 18

4 .003015 -.002568 .009529 .009259 0.0 -.013837

5 -.003618 -.003619 .003620 -.003617 .013452 -.000002

6 -.000266 -.000266 .000266 -.000266 .015687 -.006023

7 .001563 .001540 -.001585 .001583 -.006567 .000089

12 -.000891 .000928 -.000822 .000824 -.000105 -.000570

13 -.000381 .004658 -.006268 -.006263 .000033 .000658

17 -.000552 -.000333 -.000810 -.000812 0.0 -.000085

21 .000840 -.000291 -.002043 .002030 -.004348 .001618

22 .002965 .003389 -.002561 .002570 .001357 -.000201

24 .003542 -.004167 -.011645 .011593 -.008292 .002726

28 0.0 -.000003 .000004 .000003 0.0 -.000009

30 .000016 .000016 .000023 .000018 0.0 -.000005

19 2G 21

-.009082 '-.013837 -.009082

.003617 -.00002 -.003620

6 .000266 .006023 -.000266

-.001520 -.000088 .001519

12 -.000940 .000577 .000970

13 .010503 .000686 .010546

17
-.000073 -.000086 -.000075

21 .001328 -.001622 -.001337

22 -.003782 .000206 .003795

24 .011238 -.002757 -.01342

28 -.000009 -.000009 .0000O0

30 .000011 -.000004 .000014
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PROGRAM ACOSS2CINPUTOU)TPUTTAPEStrAPE6)
C
C THIS PROGRAM GENERATES AN UPPER TRIANGULAR TRANSFORMATION
C

REAL A1(21,21),A2(2l,2l),A3(21,2l) ,A4(2L,2l)
REAL 81(21,t21),B2(2l1,2l)93(21 ,21),B4(21 ,2l)
REAL Cl (2 1921 ),9C2 C21 p21 ) C 3 (21 21 ) pC4 (21, 21 )
REAL CTCCI(21,21) ,CTCC2C21921) ,CTCC3C2l,21),CTcCC21921)
REAL SAT( 21921) 9SAT2 (21 921 ),SA13(2I,921) 9SAT4(21 921)
REAL AKC21.-l2l),ACrc21,21) .BCGC21,21) ,KCC(21921)
REAL PC21#21)*S(21921)
REAL OAl(21,21),QA2(21,21),QA3(21921)PQAq(21,21)
RFAL QOB1(21,21),QO82(21,21),OOB3(21921),GO84(21921)
REAL ACGI(21,21),ACG2(21,21)qACG5(21,21),ACG4(21,21)
REAL ABG1(21921),ABG2(21,21),ABG3C2l,2l),ABG4(21921)
REAL 6AIN1(21,21),6AtN2(21,21),6A1N3(21,21),GArN4(21,21)
REAL KTI(21,?1),KT2(2t,21),KT3(21,21),KT4(21,21)
REAL KOBi (21,21),K082(21,p2l),K083(21.21).K084(21,21)
REAL GAHMA4C21,21),GAMMA2(21,21),GAMMA3(21,21)
REAL T2(21,2l),73(21*21),Tl(21 ,21)
REAL TRT(21,2I),TEN212UCTc2121iV21921
REAL RK (2 1,21 ),RK4(2192 1)RK 2(21921) 9R K3 (21 i2 1
REAL RG2(21,2IJRG3(21,21),RGI(21921)
REAL M AJM t58 958 ) 9 D a7) oxo (5a)w (17) 9 rOL gDT
REAL ZETAAA(17,B8C17) ,SING(21),XTR(21,21),XlC58)
REAL EAT(58,58),EAT2(58,58),WORK(58,581,STOR(21921)
REAL PHIA (21921),oP'IS(21,21 ),MODE(2,21),INITCA,21)
INTEGER N.N2,NC1,NC2,NC3,NCI2,NC22,NC32,NRNR2
INTEGER ICXC17J.1C2 (17),1C3(17),I,,JsKLMKKLLMM
INTEGER OECQNACTdJSEN.IR(17) ,IERSKIPNCOLNCOL1
INTEGER NDANOIMNOAI ,NDtM1,ZZE2,E3,E~iPlP2,P3
COMPLEX Z(58)#W1(12)
COMMON/MAINA/NOAeNOAl eWORK
COMMON/MA I NB/NCOL 9 NCO Ll
COMMON/MA IN1ftDIMNDIM3. ,ENX(3364)
COMMON/MA IN2/STOR
COMP9Ot/MAIN3/XTR
CO"MON/SAVE/T(100) ,TSC100)
COMMON/IN OUT/KOUT, TAPE
COMMON/NUM/IC1I ,C2 ,C3,IR ,NClNC2,NC3gNR

c
C
C INITIALI7ATIONS
C
C

N01M =12
NDIM1 = 13
I4COL = 21
NCOLI = 22
NDA =58
NDAI = 59
KOUT =
TAPE =9
a9:0
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zERz 0

C
C

PRIIJTO(////)'
PRINT.,@
PRINT.,. 0s* ..
PRINT',' *"' 3 4 U P P E R - E S 1 0 U A L "..

PRINT.,' 8b' L C C K "" 0

PRINT.,v ''. C S 0 L I I ".

PRINT., U
PRI NT~v v I

4 PRINT*,' THIS PROGRAM GENERATES A SOLUTION',
* w USING AN UPPER TRIANGULAR TRANSFORMATION'

PRINT*d////)#
C

* C
C

* C
C INITIAL SELECTION FOR THREE OR FOUR CONTROLLERS
C
C

PRINT',' FOR A THREE CONTROLLER PUN, ENTER 39 OR,
PRINT',' FOR A FOUR CONTROLLER RUN, ENTER 4
READ(8,') DEC

c
C DEC DEFAULT SWITCH
C

IF CDECoKEe4) DEC = 3
PRINT.,'
PRINT*91 THIS IS A ',DEC,' CONTROLLER RUN

C
C

* C PI MATRICES AND CONTROLLER ENTRIES
C
C

PRINTvC///)9
IF CDEC*EQ*3) THEN
PRINT.,' ENTER NC19NC29NC3,NRoNACTNSENZETA )0
ELSE
PRINT',' ENTER NC1,#NC2,kC3,NC4,N4ACTNSENZETA )I
ENDIF
READ(8,') NC1tNC29NC3vMR9NACTqr4SEN9ZETA
PRINT* ,NC 19NC2,NC 3 9NANACT vMSEN ZETA
PRINT*,'*
PRINT.,' ENTER THE ',!.ACT,' ELEMENTS FOR EACH PHIA '
PAINT*,' '
N u, MCI + NC2 # NC3 + MR

PRINr.,'CNTER PHIA ',19' >'
READ(Bo*3 (PHIACI9J)gqJ=19NACT)

88



PRINT*19 •  •(PHIA(IvtJ)vtJ-- 1v NACT)

I CONTINUE
PRINT@(//)#
"PRINT*,' ENTER THE tNSEN99 ELEMENTS FOR EACH PHIS '

PRINT*, '

DO 2 I=19N
PRINT*9TENTER PHIS ', >'
REAO(8 9e) (PHIS (I9tJ) J=l9NSEN)

PRINT*, Qv(PHIS(IvJ)9J=,NSEN)
2 CONTINUE

PRINT I('/)
C
C

C OMEGAS
C
C

PRINT*, I ENTER THE VALUE FOR EACH OMEGA '

PRINT',' 9
D 3 I=1N
PRINT*9,ENTER OMEGA 99I1 )
READ(St,) W(I)
PRINT*'' 99m l)
D(I) = -2. * ZETA W b(I)

3 CONTINUE
C
C

2 0  CONTINUE

C
C
C SECONDARY SELECTION FOR THREE OR FOUR CONTROLLERS, TO
C BE USED FOR RUNS AFTER THE FIRST JOB
C
C

IF (Q*EQ*2) THEN
PRINT*', FOR A THREE CONTROLLER RUN* ENTER 3, OR, '

PRINT*, FOR A FOUR CONTROLLER RUNt ENTER 4 >0
READ(8,.) DEC

C
C DEC DEFAULT SWITCH
C

IF (DEC*NE.4) DEC = 3
PRINT'er '
PRINT*9, THIS IS A ',DEC,' CONTROLLER RUN '
PRINT• (//) •

C

C
IF (DEC.EQ.3) THEN
PRINT'.' ENTER THE VALUES OF NC19NC29NC39NR )'
ELSE
PRINT*e ENTER THE VALUES OF NC1vNC2,NC39NC4 >9
ENDIF

* READCSi*) NClNC2vNC39NR
PRINTtNC 1,NC2 tNC39NR

89

san, -~ ~.n - - il



PRINT'(//)e
ENO1F

C
C

PRINT.,' THE FOLLOWING MODES ARE ENTERED ACCORDING TO THE
PRINT',' ORDER IN WHICH THEY ARE ENTERED IN THE DATA FILE '

PRINT*', AND NOT ACCORDING TO THEIR ACTUAL MODE NUMBEfR. '

PRINT'(/1)'
PRINTI' ENTER THE 9,KC19t CONTROLLER 1 MODES )
READ(8,*•) (IC1(Z)I=ls.NCI)
PRINTe.' qCIC1(I),:I=19NC1)
PRINT',' '

PRINT*, ENTER THE 'INC290 CONTROLLER 2 MODES >'
READ(8• •) (IC2(1) t =19NC2)
PRINTer# fq •(1C2 ([) •=1 vNC2)

PRINT'.' I
PRINT',' ENTER THE 0,NC3t' CONTROLLER 3 MODES >0
READ(Be*) (IC3(1)91 =1 9NC3)

PRIN7*,' vq(IC3(1 ) =l NC3)
PRINT',' 9
IF (DECoEGo3) THEN
PRINT*, ENTER THE 99NRq' RESIDUAL NODES >'
ELSE
PRINT*t' ENTER THE 'MNR,' CONTROLLER 4 MODES )'
ENDIF
READ(B') (IR(I)vIz1:NR)
PRINT',' 99(IR(I)vI=INR)
PRINT.,'l '

C
C

NC12 = 2 * MC1
NC22 = 2 * NC2
NC32 = 2 * NC3
N2 2" N
NR2 : 2 MR
IF (DECEQo.3) THEN
14 = 2 * NC12 + 2 * NC22 + 2 * NC32 * NR2
ELSE
N = 2 * NC12 + 2 • NC22 + 2 * NC32 * 2 * NR2
ENOIF

100 CONTINUE
PRINT*, TO PRINT ALL OF THE MATRICES ENTER I ELSE ENTER 0 >'
READ(S,*) Q
PRINT C,/, )

C
C
C READ IN TNC UEIGHTING MATRIX
C DIAGONAL VALUE FOR EACH 40DE
C
C

PRINT*9. ENTEA THE DIAGONAL VALUES, IN MODE INPUT•
PRINT',' ORDER, FOR THE CONTROL WEIGHTING MATRIX )
R-AO(,*) (AA (IJ,=1N)
PRINT.' e 9



PRINT', (A AC!) .1:1 N)

C
PRINT',' ENTER THE DIAGONAL VALUES, IN MODE INPUT '

PRINT',' ORDER, FOR THE OBSERVER WEIGHTING M4ATRIX >9

REAO(8,') (BB(I)9I11N)
PRINT',' I

C

C FORMING THE A,8,C AND WEIGHTING MATRICES
C
C

CALL FORMA(A1,DWvNC1.NC12,pICl)
CALL FORNB(B1,PHIANCi.NC12,NACTICI)
CALL FORNC(C1,PHISNCI..NC12,NSENICl)
CALL FORMA(A2vDW9NC2vNC229IC2)
CALL FORMB(B2.PHIANC2,NC22,NACTIC2)
CALL FORM C(C2,9PHIS tJC2 9MC229NSEN 9!C2)
CALL FORMACA3pDW9WC3qNC329IC3)
CALL FORM B(B3 9PHI A*NC39 NC32 9NACT 91C3)
CALL FORMC(C3,PHISPNC3,NC32,NSEN,1C3)
CALL FORMA(A4tOUWNR#t4A2*IR)
CALL FORMB(B4,pPHIAqNRJ4R2,NACTIR)
CALL FOF~f4C(C~vPH[SqNR9NR2vNSENqIR)
CALL FORMQ(QA19AA~ltCltICl)
CALL FORMQ(GOB195139NCIvICl)
CALL FORMQ(QA29AAvNCZ,1C2)
CALL FORM0CQOB29B89NC2,1C2)
CALL FOR4QCQA3*AANC3,1C3)
CALL FORtMQCQOB39BBNC39IC3)
If (OECoEG.4) THEN
CALL FORIIO(0A4,AAtNRIR)
CALL FORNQ(QOS49BR9IR)
END IF

C
C
C PRINTING THE A.B.C AND WEIGHTING MATRICES
C
C

IF (Q*EQ.1) THEN
PRINT',' THE CONTROLLER I A MATRIX IS'
CALL PPNT CA1,NC129NC121
PRINT.,' THE CONTROLLER 1 8 M4ATRIX IS'
CALL PRNT(B1,NC129NACT)
PRINT',' THE- CONTROLLER 1 C MATRIX IS'
CALL PRNT (ClvNSENvNC12)
PRINT*,' THE Cl CONTROL WEIGHTING MATRIX IS '

CALL PRNT(QAlNCI2,NC12)
PRINT',' THE Cl OBSERVER WEIGHTING MATRIX IS
CALL PRNT(QOB.INC12,NCl2)
PRINT.,' THE CONTROLLER 2 A MATRIX IS'
CALL PRUT (A29NC229NC22)
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PRINT*9, THE CONTROLLER 2 B MATRIX IS '

CALL PRNT(B2vNC22,NACT)
PRINT*,' THE CONTROLLER 2 C 14ATRIX IS'
CALL PRNT (C2,NSENtNC22)
PRINT*99 THE C2 CONTROL WEIGHTING MATRIX iS '

CALL PRNT(QA2,NC22vNC22)
PRINT*', THE C2 OBSERVER WEIGHTING MATRIX IS
CALL PRNT(QOa29NC22vNC22)
PRINT*9, THE CONTROLLER 3 A MATRIX IS '

CALL PRNT (A39NC32,NC32)
PRINT*,' THE CONTROLLER 3 B MATRIX IS •

CALL PRNT(B3*NC329MACT)
PRINT*9e THE CONTROLLER 3 C MATRIX IS '

CALL PRNT (C39NSENNC32)
PRINT4,' THE C3 CONTROL WEIGHTING MATRIX IS 0
CALL PRNT (A3tMC32tAC32)
PRINT*,' THE C3 OBSERVER MEIGHTING MATRIX IS '

CALL PRNT CQOB39NC32,NC32)
C

IF (DECEQ.3) THEN
C

IF (NR.EQ.O) THEN
PRINT*9, NO RESIDUAL TERMS 9
SOTO 115
ENDIF

C
PRINT*,' THE A RESIDUAL MATRIX IS 9
CALL PRNTCA49NR2,NR2)
PRINT*qv THE 8 RESIDUAL 1ATRIX IS 9
CALL PRUT (849AR29NACT)
PRINT*tf THE C RESIDUAL MATRIX IS 9
CALL PRNT (C4NSENvNR2)
ELSE
PRINT* • THE CONTROLLER 4 A MATRIX IS 9
CALL PRNT(A#,NiR29NR2)
PRINT.,' THE CONTROLLER 4 B MATRIX IS 0
CALL PRNT(B4,tR2,NACT)
PRINT**@ THE CONTROLLER 4 C MATRIX IS '

CALL PRNT (C49NSrNtNR2)
PRINTe,' THE C4 CONTROL WEIGHTING MATRIX IS
CALL PRANT (0A49NR2vNR2)
PRINT*9, THE C4 OSERPVER WEIGHTING MATRIX IS '

CALL PRNT(OB49NR2,NR2)
ENDIF

C
(NOIF

C
115 CONTINUE

C
C
C THIS SECTION GENERATES THE RICCATI SOLUTIONS
C AND THE GAIN NAIRICES OF EACH CONTROLLER
C
C
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IL

IF (ZZ-EQ.O) THEN
CALL VMULFP(81.B1,NC12,NACTNC12,NCOLNCOLSATNCOLIER)
E ND I F1
CALL VM4ULFM(Cl1,ClNSENNC12,NC12,NCOLNCOLCTCClNCOLIER)

120 CONTINUE
ZER =
701 0.001
PRINT*,' THE FOLLOWING ARE THE MRIC A4BG I. INPUTS'
PRINT@(//)'I
PRINT*,' M4ATRIX Al IS'
CALL PRNT (AltNC129NCI2)
PRINT*,'@ MATR.IX SAT (B1*B1T) IS f
CALL PRNT (SAT ,NC129NPC12)
PRINT',' MATRIX GAl ISI
CALL PANT (OAlNCl29NC12)
PRiNT',' NC12 = ,INC12
PRINT'(/)'
CALL MRIC (NC12,AI,9SAT,9GAI,9SABG1 9TOLs IER)
IF (ZZ.EQ.0) THEN
PRINT*,' THE RICCATI SOLUTION OF AC + BCG 11 IS
PRINT',' ZER = ,IER
CALL PRNT(SvNCl2,NC12)
END IF
CALL VIULFM(BISNC12,NACTNC12,NCOLNCOLGAINlVCOLIER)
IF CZZ*EQ*l) THEN
CALL VP9LFM(TIGAINI ,NACTE4,NC12,WCOLNCOLSTORNCOL ,IER)
CALL MMUL (RG1 ,STORE4 ,E49NC12,TEN)
CALL ? MUL(Tlt1ENPt4ACT ,E4,PNC12,GAIbII)
PRINT',' THE Gi' GAIN MATRIX IS'
ELSE
PRINT',' THE G1 GAIN MATRIX IS'
ENDIF
CALL PANT (BAIN1,NACTPNCl2)
IER z0

TL=0.001
CALL TFR(ACTpA1vNC121pNC1291v2)
PRINT','l THE FOLLOWING ARE THE MRIC A-KC I INPUTS'
PRINT'(//)'
PRINT*,' THE MATRIX Al TRANSPOSE IS '

CALL PANT (ACT ,NC1Z ,MC12)
PRINT',' THE MATRIX CTCCI (CIT*Cl) IS
CALL PRNT (CYCCi .tC12tNCl2)
PRINT'.' THE MATRIX 0081 IS 9
CALL PRNT (QOBi ,NC12,NC12)
PRINT',' MC12 z INC12
PRINTO(/)'
CALL t4RZC(NC22ACTC1CC1,QO1,PACG1,70LIER)
IF (ZZ*EO.0) THEN
PRINT',' THE RICCATI SOLUTION OF AC -KCC 11 IS'
CALL PANT £PNC129NC12)
END,*F
CALL MMULfC1,PNSENNC12,NC12vK11)
PRIt','* THE 3(1 GAIN MATRIX ISI
CALL TFA(KOB1.KTI~t'SENWC129192)
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CALL PRNT(KQB1,NC129NSEN)
125 CONTINUE

IF (ZZ*EO.0) THEN
CALL VMUt.FP(B2,B2,NC22,NACTA1C22,NCOLNCOLSAT2 ,NCOL, IER)
CALL VMULFM(C2,C2,I4SENNC22,NC22,NCOLMCOLCTCC2PdCOLIERJ
ENDIF

140 CONTINUE
IER =0
TOL Q.00O1
PRINT',' THE FOLLOWING ARE THE MRIC A'BG 2 INPUTS

PRINT.,' THE MATRIX A2 IS
CALL PRNT (A2vNC22,NC22)
PRINT',' THE MATRIX SAT2 (82'B2T) IS'
CALL PRNT (SATZNC22,NC22)
PRINT',' THE 14ATRIX 0A2 IS
CALL PRNT (QA2vNC22,NC22)
PRINT',' NC22 = 9NC22
PRINT# C/I)'
CALL MR.IC (NC22,A2,SAT2,QA2,SABG2,TOLIER)
IF (Z.EQ.0) THEN
PRINT',' THE RICCATI SOLUTION OF AC + BCG 02 [s t
PRINT',' [ER = *IER
CALL PRNT CSNC229NC22)
END IF
CALL VHULFM(B2,SAiC22,NACTNC22,N4CDLNCOLGAIN2 ,NCOL,!EPt)
IF (ZZ.EO.1) THEN
CALL VPULFMT2,SAIN2,IACTE3NC22,NCOLNCOLSrORsNCOL, IER)
CALL MMUL(RG29STORvE3vE3,tJC22TEN)
CALL MMUL(T2,TENNACTE3,NC22,GAIN2)
PRINT',' THE 62* GAIN MATRIX IS'
ELSE
PRINT*#' THE 62 GAIN MATRIX IS '

ENDIF
CALL PRNT (GA132,NACTYWC22)
[ER 0
TOL =0.001
CALL TFACACT9A2,NC229NC22,192)
PRINT',' THE FOLLOWING ARE THE MRIC A-KC 2 INPUTS 9
PRINT9(/I)@
PRINT',' THE MATRIX A2 TRANSPOSE IS
CALL PRNT (ACT dEC22 ,NC22)
PRINT'#' THE MATRIX CTCC2 (C2T*C2) IS
CALL PRNT CCTCC2vddC22,NC22)
PRINT',' THE MATRIX 012 IS
CALL PRNV CQ0829,NC22,P4C22)
PRINT',' NC22 = 99NC22
PRINT@(//)'
CALL PRICCNC22,ACTCTCC2.QOB2PAC2,TOLE.R)
IF (ZZ&EQO) THEN
PRINT',' THE RICCATI SOLUTION OF AC - KCC 32 IS'
CALL PRNT (PeNC229C22)
ENDIF
CALL MMUL (C29P9NSEN9NC229NC22tKT2)
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IF (Z7.EQol) THEN
CALL VMULFP(RK2,GAIMHA2,P3,P3,NSEHN~pCOoN0CaLSTOoNCcLIER)
CALL MMULCSTORKT2,P3,NSENNC22ZKCC)
CALL MMUL(6AH94A2,KCCNSENP3,NC22,KT2)
PRINT*,' THE K(2* GAIN MATRIX IS'
ELSE
PRINT.,' THE KZ2 GAIN MATRIX IS'
ENDIF
CALL TFR(KOB2vKT29NSENtNC22tl,2)
CALL PRNT (KO821pNC22vMSEN)

145 CONTINUE
IF QZZ.EQ.0.OR.DEC.EQ.3) THEN
CALL VMULFP(83,B3,NC52,NACTNC32,NCOLNCOLSAT3,NCOLIER)
E NDrIF
IF (ZZ.EQ.0) THEN
CALL VM4ULFM(C3,C3tNSENNC32,NC32,NCOLMCoLCTCC3,NJCOLXER)
ENDIF

150 CONTINUE
IER = 0
TOL =0.001
PAINT*#* THE FOLLOWING ARE THE YIC A+BG 3 INPUTS'

PRINT.,' THE MATRIX A3 IS
CALL PRNT CA3,NC32,PNC32)
PRINT',' THE MATRiX SAT3 (B3*831) IS'
CALL FRNT (SAT3,pNC329NC32)
PRINTs,' THE MATRIX QA3 IS'
CALL PRNT (QA3,NC32,NC32)
PRINT.,' NC32 = INC32

CALL IR IC (NC32,A3,SAr3,0A3,SABG3,ToLIER)
IF (ZZoEQ.O) THEN
PRINT.,' THE AICCATI SOLUTION OF AC + SCS 43 IS '

PRINT',' ZER = ,IER
CALL PRNT (SNC.32,HC32)
Et4DIF
CALL VMULFMCB3,SNC32,NACTNC32,NCOLNCOLGAI43,NCOLIER)
IF QZZ.E~o.1AN~oDEC.EG.4) THEN
CALL VMULFM4(T3,GAzw3,NACTE2,NC32,NCoLopNCOL*StORNCOLIER)
CALL MMtUL CR63 ,STORE2,E2vNC32vTEN)
CALL MMUL (T3,PTEIJNACT ,E2,NC32,GAV 3)
PRINT.,' THE 63* GAIN MATRIX IS f
ELS E
PRINT',' THE 63 GAIN MATRIX IS
ENDIF
CALL PRNT CGAIN3,NACTqNC32)
ICR =0
VOL = 09001
CALL TFRCACT9A3,t4C32vNC32,192)
PRINT',' THE FOLLOWING ARE THE MRIC A-KC 3 INPUTS 9
PRINT'(/)f
PRINT#,' THE MATRIX A.3 TRANSPOSE IS 9
CALL PRNT(ACT*r1C329NC32)
PRINT.,' THE MATRIX CTCC3 (C3T*C3) IS '
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CALL PRNT CCTCC39NC32,NC32)
(. - PPIt4T*99 THE M4ATRIX 00B3 IS

CALL PRN1C00B3,NC329NC32)
PRINT*,' tIC32 = 9NC32

CALL MRIC(NC32,ACTCTCC3,QOB3,PACG3,TOLIER)
IF CZZ.EQ.O) THEN
PRINT',' THE RICCATI SOLUTION OF AC - (CC 33 IS
CALL PRNT (PoNC329NC32)
ENOIF
CALL fMUL(C3,PNSENNC32vNC32,KT3)
IF (ZZ*EQ.1) THEN
CALL VNLPR3G1M3Pt2NEN'CL4OoTRIC~lq
CALL PMUL (STJR ,KT! ,P2 ,JSEl1,N*C32 ,KCC)
CALL MMUL(GAM'A3,KCC'SENP2,NC32,KT!I
PRINT',' THE K3* GAI-14 MATRIX IS
ELSE
PRINT*,' THE K3 GAIN MATRIX IS
ENDIF
CALL TFRCKOB3vKT3?NSE~~,NC3291v2)
CALL FRhT (KOR3vNC329fqSEN)

155 CONTI%.UE
)IF (DEC.EG.4) THE%
CALL VMULFPCBi,984,NR2,NACTNR2,NCC LNC3LSAT4NCLIE-~)
IF (ZZ.EQ.0) THEN
CALL VMULFM(C4,C4,NSE~dNR2,N21ICOLNCOL.CT!CC4,NCOLIER)
EkDIF

160 CONTIVUE
IER = 0
TOL =C*0(1
CALL MRIC (tR2A4SAT4,QA49S*ABG49TZL 9IE'
IF CZZ.EO0) -HEN
PRINT*9' THE RICCATI SOLUTION OF AC # BCG It IS '

PRINT',8 IER = VIER
CALL PRNrcS,?NR20tJR2)
C .DI F
CALL VMULFM(B4,S,.'.R2NACTNIR2,NCOLNCOLGAIN4,NCOLIE;)
PRINT*9' THE 64 GAIN MATRIX IS '

CALL PRNT (6AIPI4,?4ACTpNR2)
IER = 0
'OL = 0*0 01
CALL TFP9ACT9A4vNR2,t.F29lv2)
CALL MRIC (NR2,-ACT,9CTCC4,vQ0B4,PACG4 9TOL 91ER)
CALL PMUL(C4,PNSE!INR:2,NR2,Kt-4J
IF (Z?*E0.1) 'HEN
CALL VMULFP(RK4,6AMMA4,P1,PlNSE4,NC3L,4C0LSTORNCOLIER)
CALL PMUL (STCqKTqpPlNSEJttjR? ,KCC)
CALL MMULCGA!4MA4,KCC,?JSENPlPR2,KT4)
PRINT.,' -HE K4& GAIN MATRIX IS
ELSE
PRINT',' T14E K4 GAINI M4TRIX IS

CALL TrFR(K0834,KT4,raSE!. 2,'!
CALL PKNT CKGB4,NR29N-_EI,
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165 CONTINUE
E' DIF

C

C
C THIS SECTIGN GENERATES THE BLOCK SEGMEN-S
C OF MAJM AD PUTS THEM INTO THE MAJM MATRIK"C

C THE THREE CONTROLLER MATFIX VILL CON-AIN
C RESIDUAL TEP.MS (SEE DIAGRAM BELOW).
C
C THE FCUR CC'TROLLEP MATR:X DOES NOT
C CONTAIN FESIDUALS (YET).
C
C THE THPEE C3NTROLLES MAJM MATRIX UITH
C RESIDUALS MILL LZCK LIKE:
C
C
C • *

C * AI BG1 BIG1 8162 BIG2 B163 3163 0 *
C * *

C * 0 A1-KC1 KIC2 0 KIC3 0 KlC
C * *

C * B261 B2G1 A2.BG2 B2G2 B2G3 82G3 0
C •
C • K2C1 a 0 A2-KC2 K2C3 0 K2C
C • •
C 83G1 B3G1 83G2 B3G2 A3 BG3 B3G3 a *
C
C • K3C1 0 K3C2 0 0 A3-KC3 K3CR
C 0

C * BR1 BRG1 URG2 BRG2 BRG3 SR63 AR *
C * •

C
C
C

K = 2 * 'C12
KK = K + 'C22
L = 2 * 4C22 + K
LL = L + :C32
PI = 2 * NC32 + L
IF (DEC.EQ.3) THE'
MM = 2*NC12 + 2'?;C22 + 2*NC32 * NP2
ELSE
MM = 2*NC12 + 2*NC22 + 2*NC32 * 2.NR2
P2 = PI + NR2

Et.DIF
C

DO 200 X1=1MM
00 200 J:11MM

200 MAJM(IJ) = o.O
DC 201 I=1NCl2
O 2C1 J=:1NC12

201 MAJM(IJ) x ABGI(IJ)
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DO 202 1=11,,C22
00 202 J=19*.C22

202 PAJM(I+KtJ+K) =A8G2 . isJ)
DC 203 I:1,'.C32
00 2G3 J=1,NC32

203 MAJf(**Ltj+L) =AIG3U,1J)
CALL TFK(AKC9ACG1 ,4C12,f.Cl2,1,2)
DC 204 l1,A9Cl2
DO 204 J=19N-C12

204 DMAJM(:. NC12,J+%C12) = AKC(IJ)
CALL TFR(AKC9ACG2,iC229NC22vlq2)
DO 20t I=19NC22
DO 205 J=19N~C22

205 IAAJM(4KKJ+KKIO AKC(IJJ
CALL TFP(AKCACG3,'1 CS2,l.C32,1q2)
DC 206 119C32
DC 206 J=19NC32

206 MAJMC.I*LLJ+LL) =AKCCI,J)
CALL MMUL(B1,GAIN%1,NC'12,NACTP'Cl2,BCS)
DO 207 1=1,NC12
DC 207 J=19NC12

207 MAJM(IJ4K.C12) =BCG(!,gJ)
CALL PMUL (Ell GAV4 2 9-C12 ,NACT iNC22 9BCt
D0 206 1=1,t:Cl2
DO M J 1 NC22
MAqJM(t4iJK) BCGU,#J)

2083 MAJM(IJ.KK) BCG(I,J)
CALL MMUL (B1,GA-i\3t,NCl2,NACTNiC32,BCS)
DO 239 I=1,'JC12
DO 20S J=tNC32
MAJM'(IPJ+ L BCG r .j)

209 MAJt'(ItJ+LL) = BCGCIvJ)
CALL f'UL(B29GAI?,1,jNC22NACTNC12,8CG)
DO 210 I=19NC22
DO 21C J=19!.Cl2

210 MAJM(I.K,J'*iC12) = BCG(IJ)
CALL M4MUL (B2,GAIN42 NC22 ,9NACTNC22,BCS)
DO 211 t1,19NC22
DO 211 4=19C22

211 MAJM(I*KJ+KK) = BCG(!gJ)
CALL MMUL(B2,GA'?:3,iNC22,NACT,NC32,BCG)
DO 212 !11NC22
DO 212 J=19NC32
MAJMI(*KoJ*L) BCG(!oJ)

212 MAJM(I.K*J+LL) BCG(1,tJ)
CALL M1UL(B3,GAI'-Il1,C32,NACTNC12,8C9)
DO 213 I=1,,tC32
00 213 J19IC12
MAJMCI+LqJ) = BCG(1,J)

213 MAJCI+L#J+NC12) = BCG(I.J)
CALL P'MUL CB39GA'J2 vMC32 9JACT 9P#C22 oRC6
DO 214 X1,1NC32
D0 214 ,J=1,NC22
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MAJ'(I*L*J*K) BCG(,oJ)
214 MAJM(I*LJ+KK) RCG(:gJ)

CALL MJL(B3,GAI' '3,NZC329,AC1o,1,C32,3CSJ
Do 21! I=1,?NC32
DO 21! Jzl,'.C32

215 MAJp(:#-LoJ+LL) =BCG(!tJ)
CALL MMUL(KOBlC29,\C1--,SEN?.C22,KCC)
Do 216 I=1,'1C12
00 216 J=19NC22

216 MAJM~l+',Cl29J+K) = KCCCIPJ)
CALL 1'MUL (KGSI ,C3 v Cl 2,9ISEN 9 C32,4KCC)
0O 217 I= 1,'.Cl2
DC 217 J= l,'NC32

217 MAJM(:.C129J+L) KCC(TtJ)
CALL MMUL (KrCB2 ,C1 ,'C22,r.SEN ,C12 ,oKCC)
DO 21 1=19%C22
DO 21 , J1,l.C12

218 MAJ(:*KKtJ) =KCC(IJ)
CALL MML(KOB2,C3 'iC22,NSENol.C32,KCC)
D0 219 Izl,11C22
D0 21rr J=19'iC32

219 MAJf4(:*KK(,J+L) = KCC(:,J)
CALL ML (KOB3,C1 li4C32,NSEiN~C12qeKCC)
DO 22C I119NC32
DO 22,1. J:1,i.4C!2

220 MAJM(I.+LLvJ) =KCC(I.J)
CALL MMUL CKO83,C2,NC329',SEiq?iC22,I(CC)
DC 221 I119fiC32
00 221 J1l.'.C22

221 MAJM(.LLJ+K) =KC.;J
CALL i4MLL(B4,GAIk1,tNR2,NACTNC12,BCG)
DG 222 1=19%P2
00 222 J=1,NCl2
MAJP(IFI,JJ z CG(IvJ)

222 MAJM(I.PlJ+'IC12) =RCG(!tJ)
CALL MULC84,6AIW.2,#R2,AACTI4C22,BC6)
DC 223 I=1,f.-2
DO 223 J=1,?C22

223 MAJ,(I+PltJ*KK) BCG(ItJ)
CALL wMUL(I4,GA'1,A4Q ^gNACT0JC32,BCG)
00 224 1=19NP2
DO 224 J:1~,C32
MAJMI#P1 J*L) BCG(IiPJ)

224 RAJ(I+P1#J*LL) BCGUvJ)
CALL MMUL(KO8tC9NClZtNSENtNR29KCC)
0O 225 1=1,C12
00 225 J=19NR2

225 MAJMI.t.C2J+Pl) = KCCCI*J)
CALL MMULCK02C9,NC22tSENR2,KCC)
DO 226 !1,19NC22
D0 226 J=I,,92.

226 IAJw(#KKJCL') =KCC(:oJ)

CALL MMUL(KOS3,CqNC329NSEN9NR29KCC)



DO 227 !119NC32
DO. 227 J1*Np2

227 MA1JMCI.LL.,J*P) =KCC(IsJ)
C
C

TF (DEC*EQe3) THENJ
C

CALL FOP-4A(A4*DvW9NRv'.R2v1R)
DO 225 I1,NR2
DO' 22S J=l1042

ELSE

DO' 230 I:1,t. 2

DC 230 J19NRZ
230 PAJM(I*PIJ*Pl) = ABG4(IJ)

CALL TFR(AXC9ACG,FJR2,tP2v1,2)
DC 231 I:19N; 2
DC 231 J=1,NR2

231 MAJM(.'P21pJ+P2) = AKCC!,J)
CALL !4UL(B1,PGA~,I.tC12,NACTNR2,8CG)
DC 232 I:19%C12
DO. 232 J--1,9R2

232 MA~JM(iJ*:12) =BCG(TtJ)
CALL M4MUL(B2,GA\4v.C22,iJACT,?jRe2,BC&)
DO 233 I1l,#'C22
DO 233 J=19NP2
MAJF4('PN(J.FI) =RCG(IJ)

233 MAJM(14.Kj*F2) =BCG(!qJ)
CALL PVMUL (83,GAI~f,C32,NACTovR2,RCG)
D00 234 I11NC32
DC 234 J:1g,.IP2
?AJM(I+LYJ+Pl) = BCG(.,tJ)

234 MAjW(I.Loj+P2)* BCGC(IJ)
CALL PMUL(84vGA1:.4,tR2tNACTvNR298C6)
DC 236 1=1,NP2
DO 238 J1,vNP2

238 MAJPI+Pltj4r-2) = BCG(IYJ)
CALL MMUL (KOB4,ClNR2,NSENNC12,KCC)
DC 242 I10R2
00 242 J=19NC12

242 MAJM('l.29J) zKCC(IvJ)
CALL MIULCK0B4,C2,NR2,t4SENvNC22vKCC)
00 24.3 I11%R2
04 243 JzlNC22

243 MAJM(!.P2,.J+K) =KCCC.#J)
CALL MMUL(KOB4,C3,j.R2,NSENoNC32,KCC)
D0 244 I1,tiNR2
DC 244 J=190C32

244 MAJM4(loP21pJ+L) =KCC(1,J)
EI.DIF
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F4
C
C
C TA, DAM E NGU WE HAVE rME MAJNM ~ATRIX
C
C

F (DEC.EG*4) 'HENh
PRII To,' THE FOUR CO!.PFOLLER FAJM IS
ELSE
PRINT.,' THE THREE CCt.TROLLER MAJM WIRESIDUALS IS
END! F
CALL PRNT XL(MAJMv?dlMP)

C
C
C EIGENVALLIE A ,ALYSIS SEC7:ON
C
C

PRIM U(/ / I'
PRINT.,' OVERALL SYSTEM EIGEVALUES
CALL EX61tF(pOAJMtl'0,\DAOZPTENNCCLWORKIER)
PRINT*,' IER =9'E
Dc 4CC I:1,MM

400 PFIT',' qqZCI)

C
PRINT',' EIGEPJVALUES C~F AC * tRC6 SYSTEM 1
CALL EIGRFCAB61,'.Cl2,\COLOU1 ,TE!,NCCLSTORIE )
PRI&T..' !ER 09E
DO 401 I:1,NC12

401 PRINT.,' 'g~ll!)

PRINT*,' EIGENVALUES OF A^ - KCC SYSTEM 1 '

CALL TFR(AKCACGlot-Cl.1,C124PI,2)
CALL EIG~tF(AKCNC12,?4COL,0,UlTENNCOLSTORIER)
PRINT',' IER = 9IER
DO 4G2 rINC12

402 PRINT.,' O',U1(I)

C
PRINT..' EIGENVALUES CF AC 4 BCG SYSTEN 2 '

CALL E.IG F(ABG2,~jC22, \COL,0, VI TE~lNCCLSTORIEF)
PFXNT*9' 1ER = 9 E
DO 403 I11NC22

403 PPINT**g 'gull!
PRINT' C/f

PRINT','g EIGENVALUES, OF AC - KCC SYSTEM 2 9
CALL TFR(AKCACG2NC22,'C22,192)
CALL EIGRF(AKCNC22,!.COJL,3,WITENNCOLSTCRoTER)
PPIN T 9' IER= 9E
DO 404 I:19%.C22

404 PRINT9' 'g9ll!

C
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PRINT.,' EIGENVALUES 3F AC + BCG SYSTEM 3 9
CALL EIGIF(AB63,C329,CCL,0,Wl ,TENNCCLSTC'RIER)
P0INT.,' IER =*PIER
DC 405 I=19NC32

405 PRINT.* et1.11()
PPIP4TOC/f)

C
PRIPNT., EIGENVALUES OF AC - KCC SYSTEM 3
CALL TFR(AKCACG39'!C32,!-.C3291s2)
CALL EIG'F(AKC9,iC32,ItCOLgU1,TENNCOLSTORIE4)
PFINT.,' TER = IIER
00 4o6 I~t%-3

406 PRlAIT.,' '.1.5(I)
PRIN'T$(//)g

c
IF (NR.EQ*O) THEN
F'PtNT',' '20 RESIDUAL rERM EIGENVALUES '

SOTO 410
END0!F

C
IF (DEC*EO.4) THEN

C
PRIN'..' E4GENVALUES O~F AC + BCG SYSTEM 4
CALL EIG- F(ABG4,k 2,NC0L,0,U1,TENNCOL,3TORIER)
PPIt4T',' :ER = 997ER
DO 407 I:1,NP2

401 PRINT*,' toU1CI)
PPINT9* C,)'

C
PRIP;T',' EIGENVALIJES OF AC - KCC SYSTEM 4'
CALL 7FR(AKC9ACG49-'.R29hR291,2)
CALL EIGRF(AKC,?R2,NtCCL,0,W1,'ENNCCLSt-CRIER)
PFINT.,' IE ='gIER
00 408 I119W2

408 PRINT',' lVl(I)
C

ELSE
C

PPINT',' EIGENVALUES OF THE A RESIDUAL MATRIX'
CALL ElqC4N2NC99~T~NOoTRlR
PRINT',' IER =91'
DO 40S I11NP2

409 PRINT.,' toU1(X)
Ef:DIF
PRINT#* CII) '

C
410 CONTINUE

IF (ZZ*Ego1) SOTO 600
C
C
C THIS5 SEC-104 FORMS THE TRANiSFORM4ATION MATRICES.
C TO GET P'AJM IN UPPER TRIANGULAR FORM, IT IS
C NECESSAPY TO DRIVE THE B2G1, 8501, 83G29 K2C1,
C KSCl AND K3C2 TERMS TO ZERO (THREE CTLR )*
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C
C WHEN FOUR CONTROLLEPS AR~E USED, -HEN~ MAJM
C WILL INCLUDE: G4 AND K4 TERMS. IT WILL THEM4
C BE VECESSARY TO DRIVE THE B4GCI), AOD Kt+C(l)
C TERM4S TC ZE.RO9 AS WELL*
C
C
C AFTER THE TRANSFORMATION' IS COMPLETE,
C THE THREE CONTROLLEP MAJM (WITH RESIDUALS)
C WILL LOOK LIKE:
C
C **0*

C.
C *A1+861 8161 B162 BlG2 B1G3 8163 a
C
C a A1-KC1 KIC2 0 KIC3 a KlCR
C
C * 0 a A2+8G2 B262 8263 92633 0
C*
C * 0 1) 0 A2-KC2 K2C3 a K2CR
C
C * 0 0 a 0 A3+863 8363 0
C
C * 0 0 0 0 A3-KC3 K3CP
C.
C 13 BGI BRGI BRG2 BR62 BR63 BR63 AD
C*
C *.
C
C WHERE THE MON-ZERO TERMS INCLUDE THE TRANSFORMATICN
C MATRICES.
C
C
C
C
C ON WITH THE TRANSFORMATION MATRICES[
C
C FIRST THE OBSERVER GAIN MATRIX, K4
C WHEN USI&.6 FOUR CONTPOLLERS
C
C

IF (DECoEO.4) THEN
CALL TFRCCTqCl9NSEN9tNC12v1,2)
00 500 I1,NC1
0O 500 J=1,NSEN

500 V(IJ) =CT(I9J)
CALL TFR(CT9C29N'_E~qNC2291t2)
DO 501 I1,lNC2
DO 501 J=1,NSEN

501 VCI*NC1,*J) =CTCI,J)
CALL TFR(CT9C39NSENip?.C321,2)
DO 502 I11NC3
OC 502 J:1,NSEN

502 VI*raC2#%..C,J) CT(I,JR
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4L

IJPV = Ct + NC2 N ~C3
PRINT*9' V (C1/C2/C3) IS
CALL PRNT (V9'-!RVC9NSE%)
CALL LSVaF(VI.COL ,fPVNSENTENNCCL,-ISINGSTORgIER)
PRINT,' 0
PRINT.,' LSVDF K4 ZER = OIER
PF.INTO(I/)'
PRINT*,' V OUT OF LS'JOF IS
CALL PRNT (VI.SENvNZ;Et,)
P1 = SE'i - NFV
IF (P1.LT.1) THEN
DC 503 I=1,fJSEN

503 GA14PA4(I,1) =V(lNSEN)
P1 1
ELSE
DC 504 1=1NSEN
00 504 J~lPI

504 GAMMA4(IoJ) =V(IsJ~t,.RV)
E1 0 1I F
PRINT*,' TRANSFORU'ATION MATRIX GAMtMA4
CALL PRNT (GAMMA49NSE%'9PI)

C
C CHECK TC SEE THAT GAM.MA4 IS ORTHOGONAL TO :19C29 A'D C3
C
C NOTE: AKC IA THIS SECTION IS JUST A WORK 4REA TO TES T

C THE ORTHC6ONALITY CF CT * GAM4A. IN ALL CASES IT
C SHOULD BE A BLOJCK ZERO MATRIX.
C

CALL 'kFCCT9CI,%Ef:,9C12v192)
CALL M1MUL (CTGAMMA4,P.C12,NlSE1,P1 ,AKC)
PPINT.,' CIT * GAMVA4I
CALL PRNP (AKCvNC129P.)
CALL TFF(CTvC' 'pjEN9NC22,1,q2)
CALL MMUL(CTPGAMIA4,;',C22,NSEtjPlAKC)
PRINT.,' C2T * GAMM4A4
CALL PRN' (AKC#-*.C22vPl)
CALL TFR(CTC3,st.EN*4,*C3291,2)
CALL MMUL(C'GAt'MA4,NC329,NSEP.,PiAKC)
PRINT*,' C31 * GAMM1A4I
CALL PR'.t (AKCNC32,Pl)

C
PRINT.,' C123 SINGULAR VALUES 9
CALL PRNr(sI'jGt,~jRvyl)
CALL TFR(TRTGANMA4,I.SENPl,1,2)
CALL PIAUL (TRTvGAMMA49F1,NSENPlRKJ
CALL GMI'3VCPPP.KRK4,JvTAPE)
CALL "FRC CT9C4,?.SEN9,P2 919 ,)
CALL PIUL (TRTC4,Pi,kN'E,NP2,AKC)
CALL P'JUL (CTGAMMA4,!'P2 ,NSENP2,KOB4)
CALL MMUL(KO84,PK'qNR2tP1,P1,STOR)
CALL P4MUL (ST0RtAKC9NR29PltNR29CTCC4)
Ef':DIF

C
C THIS CTCC4 WILL BE SUBSTITUTED BACK INTO M4IC
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C SYSTEM 4 TO GET A NEW K~.
C
C
C !4IU THE OBSERVER GAIN MATRIX, K3
C
C

CALL TFPt(CT9CIN'LEN9P.C129lip2)
DO 505 I:19,C1
DO 505 J1,NSEN

505 V(ItJ) =C7li
CALL TFrk(CT9C2,1N3E%9tC2291q2)
DO 506 I119%C2
00 5C6 J=10NSE%

506 VtI.NC1,J) CT(I,J)
NPV z NCI -.'C2
PPIPT.,'P V (C1/C2) ISz
CALL PqNT (Vqe.RV,',SEN)
CALL LSVDF(V,!.COL9,NRVNSENTENNCOL,-I9SI'4GSTOR,:EO)

PRINiT*,' LSVDF K(3 IEF= 9E
PPII41'(//)@
PRINT*,' V OUT OF LSVOF IS
CALL PRN~T (V9'%SEI,9NSEt.)
P2 = SEN - 4'
IF (P2*LTel) 7HE!%
DC 50 7 I: 1,1NSEN

507 GAMMA3(1@1) =V(19.NSEJ)
P2 =1
ELSE
00 506 I=1,NSJEN
DO 5C't &1,P2

508 GAMMA3(I.PJ) =V1JhV
ENtIYF
PRINT*,' TRANSFORMATION MATRIX GAMMA3 '

CALL PRNT (GA!MMA39NSEAJP2)
C
C CHECK TC SEE THAT GAMMA3 IS ORTHOGONAL rO Cl AND C2
C

CALL TFR(CTClttE'.%o.'.C1291,2)
CALL MMUL(CTGAI4MA3,;Cl2,NSENP2,AKC)
PRINT',' CIT * GAM1A.SI
CALL FRNT (AKCI-C12,P2)
CALL TFPCCTC2,'NSELqlC221v2)
CALL t'MUL (CT,6AMMA3,*4C22,NSENP2A(C)
PRINT',' C2T * GAJ4HA3
CALL FRNT (AKCokNC229P2)

C
PRINT',' C12 SINGULAR VALUES
CALL PRhT(SINGNRV9l)

C
CALL TFR(TRTGAMA39N. ENP2,l,2)
CALL MMUL(TRT9GAMMA39P2 ,NSENP29,;K)
CALL GMIsV(P29P2vPKvFK39J9TAPE)
CALL TFR(CT9C3qNSENvC329192)
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CALL HMMUL TRTsC39P29?'SENNC32,AKC)
CALL MMUL(CTGAMA3,*4C32,NISE.,P2,K' 83)
CALL MMUL(K0B3vPK3,NC329P29P2vSTOP)
CALL MMUL(STORAKC,\C32,P2,NC32,CTCC3)

C
C
C CTCC3 WILL BE SUBSTITUTED BACK INTO
C MRIC-SYSTE4 3 FOR A %Eh 1(3a
C
C
C N4OW THE CBSERVER GAI% 14ATRIX9 K2
C
C

CALL TFR(CTtCl9-4SE:N9%NC29,2J
0O 509 !:1,NCl
00 509 J=1,NSEN

509 V(19J)* CT(IJ)
PRlJT~tg V (Cl) IS
CALL PRN'T (VvNClv,";SE&)
CALL LSVDF(V,';COLNCNSENTENNCOL-,SI4GST3RIEP)
PP1T.,'t
PRINT*,' LS'JDF K2 IER = vIEF

PFINT*,' V OUT OF LSVOF Isv
CALL PR'JT (Vt.SE?.'t%.SEN)
P3 =NSEN - NC1
IF (P3oLTal) THEN
00 510 I=lNSEN

510 GAMM1A2(Ivl) =V(IsN~SEJN)
P3 1
ELSE
DO 5211 1=19,-EN
D0 511 J=1,P3

511 GAPA2(9J)= V(IeJ*NdCI)
ENPD IF
PRINT',' TRANSFORMATION MATRIX GAMMA2 9
CALL PRI.T (6A74MA2NSENvP3)

C
C CHECK TO SEE THAT GAMMA2 IS ORTHOGONAL TO Cl
C

CALL 'QMUL CTGAMMA2,jiClZNSENP3AKC)
PRINT*$ ClT * GAMMA2'
CALL PRPIV(AKCoNCl29P3)

C
PRINT',' Cl SINGULAR VALUES
CALL PRNT(SING9NCl,1)
CALL TFR(TRTvGAMA2N-ENP3l,2)
CALL PMUL(TRT9GAM9tA2,P3vNSENvP3vRK)
CALL GMINIV(P39P39PI(,RiK29J9TAPE)
CALL TFR(CT9C2vNSEN9'lC229192)
CALL MMUL(TRToC2,P3, ;-ENNC22,AKCI

(CALL IMUL(CTGAMMA2,'.C22,NSENP3,K)B2)
CALL FMULCK0B29RK2,NC22vP39P39ST0R)
CALL MMULCSTOPAKCseCa,2P3,NC22,CTCC2)
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C
C
C CTCC2 WILL BE SUBSTITUTED BACK 1?1FO
C HRIC-SYSTEM' 2 FC- A K.EW K2
C
C
C NOW THE CONTROLLER GAIN MATRIX, 63
C
C

IF (DECoEQ.4) THEN
DO 512 I1,9%F
DC 512 J=19 4 ACT

512 V(rq4) z 84CI.NPtj)
PRINT.,' V (84) I.Z
CALL PRNT CV,0.RPtNACT)
CALL LSVDF(V,?iCOL 9NR tt.ACT *TEN 9NCOL 9-1 9S INJSTC-R IER)
PRIKTO,'
PRINT*,' LSVDF 62 IER = 99IER
PpIN1'o(//)So
PRIP.,' V OUT CF LSVDF IS
CALL PRNT CVNACTvNACTl)
E2 = lvACT -NI
IF CE2.LT.1) THENA
00 513 I=19NACT

513 T3(I,1) = V(INACT)
E2 1
ELSE
00 514 11NACT
DO 514 J=1,EZ

S14 T3(IJ)= (q+2
EfNJOIF
PRINT',' TRANSFCR4ATION MATRIX T3
CALL PRNT (T39NAC'vE2)

C
C CHECK TO SEE THAT T3 IS ORTHOGONvAL TO 84
C
C NOTE: I% THIS SECrICN, SCG, IS THE WORK AqEA
C FOR B * To IN ALL CASES THESE SHOULD
C BE BLOCK ZERO MATRICES*
C
C

CALL MMUL(B4ipT3,,P2,fJACT9E29BCG)
PRINT*,' 84 * T3 I
CALL PR?%T (BCG9.%f2,E2)

C
PRINT',' 84 SINGULAR VALUES
CALL PRNT(SING9N~l)

C
CALL V1UF(~T9A'E92*NCPCLRiC~I2
CALL GMz4V(E29E29PK~tkG39J9TAPE)
CALL tMUL CB3,'3,tiC329',ACr.E2,MOB3)
CALL FMUL(KO039,PG,!,!C32vE2vE2#SAT3)
CALL VMULFP(SAT3, 3,'C32,E2,PkACT,%.COLNCOLKOII3,NCOL,:EP)
CALL VMULFP(XG83,83,t?.C32.NACTNC32,9dC.LNCOLSAT3,NCOLIE--)
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(. ENOIF

C THIS SAT3 WILL BE SURSTZTUTED BACK INTO MRIC
C SYSTEM 3 FOR A NEW G3*
C
C
C NOW THE COI TROLLER GAIN M'ATRIX9 G2
C
C

0C 515 I1,NC3
DC 515 J=19NACT

515 V(IJ) =83CI+NC39J)
IF (DEC.,EQo4) THEN
DC 516 I=IgNR
00 516 J19NACT

516 V(I'?iC3ipj) =B4(I.IIRt4)
PFINT*99 V (83/B4) IS
PNAV =NC3 +*NP
ELSE
PRINT*,' V (63) 170
NFV = NC3

S Ef.DIF
CALL PRtNT (VvhRVqNACT)
CALL LSD(v;Ov4~NCtE~NCo1SNgTP:q

PPIJ..'g 0
PFINUT*90 LSVDF G2 IER = PE

PFINT.,' V OUr OF LSVOF IS
CALL FPNT (VIaACT~thACT)
E3 = ACT - NFV
IF (E3*LTol) -HEN~
DC 517 1 =1,NACT

E3 =
ELSE
011 SlE I:1,NACT
DC 516i J:1,E3

518 T2(19J) = V(I 19J~tiPV)

PRINTOl TRANSFORMATION MATRIX T2'
CALL FRNT (T29NACT9E3)

C
C CHECK TO SEE THAT T2 IS CRTHOG0IAL TO 83 ANID 1B4
C

CALL I'MUL CB3,T29,'C32,"IACrC3,8CS)
PRIWT*tt 83 * T2I
CALL PRkrT(8CG,';C32,E3)
IF (OEC*EQ*41 THV1
CALL MMUL(0BAT2,f.4R2,hsACTE3,BCG)
PRINT096 84 0 T2
CALL PRNTl(BCBPNR2vE3)
£?. 0IF
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IF (DEC*EQ.3) THEN'
PRINT*,' 83 SINGULAR VALUES
ELSE
PRINT*,' B34 SINGULAR VALUES'
V ,. I F
CALL PRthT(SING9NRV,')

C
CALL VMULFMCT2,T2,NACrE3,E3l1COLof1COLRKNCOLIE"7)
CALL GMI4VCE39E39FK,G29JTAPE)
CALL fl4UL (82,9T2 o.C22 ,AC " ,E39KCH2)
CALL U1MUL CKOB2 9:G2 i C22 9E3 vE3vSAr2)
CALL VMULFP(SAT2, -2,:.C22,E3,k-ACT,?.COLtCLK-B2,NCOL,'EO)
CALL VMLPK892,.29AttC2NOgC~ST9C3OEl

C
C
C SAT2 WILL BE SUBSTITUTED BACK INTO
C MRIC-SYSTEM 2 FOR A N~EW G2.
C
C
C NOW THE CONTROLLER GAIN MATRIX, GI
C
C

00 519 I=.#NC2
DO 519 J=19NACT

519 V(XJ) =B2C1.NIC29J)
DO 520 I=1,NC3
DO 520 J=19NACT

520 V(I.?.C2*J) = B3(I*P.C3vJ)
IF (DECoEQo4) THEN
00 521 I=1,NR
00 521 J=1,NACT

521 v(r.C2+'4C3,J) = 41+RJ
PRINT.,' V(02/83/84) IS'
NRV =NC2 + NC3 +N
ELSE
PRINT*,' V (82/83) IS
NRV =NC2 + NC3
Vi.DIF
CALL PRNT (VgNPVgNAC-)
CALL LS'VOF(VNCOLNRVNACTTENNCOL 9-1, SINGSTORIER)
PPINT.,'
PRINT.,' LSVOF G1 IER= 9E
PRINT V/)
PRINT*,' V OUT OF LSVDF IS'
CALL PRNvT (V,',ACTNAC)
E4 Z NACT - NF~V
IF (E49LT.1) THEN~
DC 522 I=1NACT

522 T1(I,1) =V(INACT)
E4 = I
ELSE

f 00 523 I1,1NACT
00 523 J=19E4

523 11(iJ) v(Ij*NRvi
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END IF
PRINT*9' TRAN1SFORMATICIN MATRIX TI
CALL PRAkT (Tl1.UACTvE4)

C
C CHECK TO SEE THAT TI IS ORTHOGONAL TC B29B39B4
C

CALL MMUL (82 1Tl 9NC22 9%AC',mE4 9CG~
PRIF:T~vw 8~2 *Ti
CALL PPK'T (BCGqNC229E4)
CALL MMUL(B3 i,'!C329'ACT9E4,8CG)
PRIN~Toof 83 * 71I
CALL PRNt. (8CGipNC32vE4)
IF (OECoE'~.4) THE,,
CALL MMULC84,'ivtP29..ACT9E4tBCG)
PRINiT',' 84 * Ti 9

CALL PRNT CBCGpNR29E4)
END 0IF

C
IF (DECoEO.3) THEN
PRINT.,' 823 SINGULAR VALUES
ELSE
PRINT~,' 8234 SIN.GULAR VALUES'
Ef.DIF
CALL PRt4T(SING9NRV,1)

C
CALL VHULFM(T1,Tl.NAC-,E4,E4,NCCLNC'.LoqKNCCLIE')
CALL GMIlJV(E4,E4v;-K9FG1,JqTAPE)
CALL MMUL (djq,'1,?Ci2v,.ACT9E4,pKC8l)
CALL FMLtOl GvC2E,~ST
CALL VMULFP(S)AT,rl1,NCl2,E4,NACT,'C'.LtPC: LKO81N4CCL,:'ER)
CALL MULFPCK':BiBiXC12,P-ACTtC12CC,?NCDLSAT,%'COLIr )

C
C
C SATi WILL BE SUBSTITUTED BACK INTO MRIC-
C SYSTEM 1 FOR A NEW 6I
C
C

ZZ = I
GOTO 115

600 CCNTINUE
ZZ =

C
C
C THE PROBLEM IS NOW COMPLETE
C
C

P~t.Tc,,fl
PRINT.,' THIS RUN HAS BEEN COHPLETEZ

C
C
C FROM HEPE WE CANi START OVEP, REARRANGE, OR STOP
C
C

110



PRINT*, ENTER I TO CHANGE THE WEIHrIuG MATPIX '
PC IN', e 0 IF

PRI&Tt, ENTER 2 TO MAKE A FOUR CONTROLLER RUN 1
ppl-*, 9 1

PPINT't, ENTER 2 ALSGi TO REARRANGE MODES F.IR q 9N

PRINT*,' ENTER 3 TO TERMINATE T4IS JOB '

READ( *) 0
plaiNT* (//I

PRINT*qQ
IF (Q.EQ.1) THEN
GOTO lOG
ELSE IF (Q.EQ.2) THE%
GOTO 20
E'DIF
E.D

(,
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Appendix D

Program Subroutines
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SUROUTlINE FACTOR (NA .S MR)
C A:=Z*S

COMMON/MAINi3/NCOL ,NCOL1
COMMON/ iN OUT/KOUT
TOLZ1 .E-6
MR=O
N N:N*NC DL
TOL1=0.
00 1 1=19NNNCOLl
R=ABS(AC I))

I IF (R.3T.TOL1) TOL1=R
TOLI=TOLI *I.E-I 2
11=1
00 50 I11N
imizi-1
DO 5 JJ1NNeNCOL

5 S(JJ)=0.
[0= 11m
R:A (10) -001(1 Ml S(II) 'Sc I) )
IF (ASS(R).LT.(TOL*A(ID)+TOL1)) GO TO 50
IF (A) 15#50920

15 MR=-1
WRITE (KOUIT 91000)

1000 FORMAr(3lH0TRIE0 TO FACTOR AN INDEFINITE M4ATRIX
RETURN

20 S(Il)SQRT(R)
MR=MR-o1
IF (IoEQ.N) RETURN
LII.+NCOL
00 25 JJLNN9NCOL
[4J JJ+ I 

25 S(IJ)=(A(lJ)-OT(JM1,S(11),S(JJ)))/S(ID)
50 [[:II.NCOL

RETURN
END

SUBROUTINE FORt4A(A9DtWNN2,IC)
COMM0NffMA 1 N!IINCOL
REAL ACNCOLPNCOL) ,W(17),OC 17)
[NTEGER IC(N)vIvJqriqM
DO I I=I042
00 1 JZjN2
ACI ,J)0O

t CONTINUE
00 2 I11N
M= ICC!)
A((I.,N),(I+N) )=O(f4)
A(ry(14N)) =1.0

A((IN~oI -(W(M)*62)
2 CONTINUE

RETURN
ENO
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S ~rO-f 4EFOPMS#PI N9~sAC 9C

COMMON/MA INR/NCOL
REAL BCNCOLNCOL) oFHI (NCO LiNCOL)
INTEGER [ C(N) 9NACTiNtMI,9J
00 1 1=I9N2
DO I J=19NACT
B(IJ) =0.0

1 CONTINUE
00 2 [11N
m= ICMI
00 2 J~lvNACT
B((N+1)*J) =PHI(MJ)

2 CONTINUE
RETURN
END

SUBROUTINE FORMC(CPHlSN9N29NSEN91C)
COMMION/M4A I N/NCOL
REAL CCN'COLvNCOL) ,PHISCNCOLI4COL)
INTEGER IC(f)sM9NSENN*N2,I9J
DO 1 11NSEN
D0 1 J1,tN2
C(I ii) = 0.0

I CONTINUE
00 2 [:1,NSEN
00 2 J=I#N
m = IC(J)
CCIqJ) = PHIS(Mtl)

2 CONTINUE
RETURN
ENO

SUBROUTINE FORMQCQvANIC)
COMMON/NA INB/NCOL
REAL ACNCOLhpQ(NCOLNCOL)
INTEGER I 'JtK*M9N#N29IC(NCOL)

N12 zN * 2
DO 1 I11N2
DO L J:1,N2
QCIqJ) = 0.0

L CONTINUE
00 2 1=19N

M ICM!
DO 3 K=1-19[

3 Q([eKqJ4K) ACM
2 CCNTINUE

RETURN
E ND
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SUSRouT EN E. GH[ 14NR iNC ~MRMT)
D I MENS ICC A( I) *V( I)
COHNit/PiA (N I NlMe NOI Ml vSCL
COMMON/ MAI INH/NC0L #NCOL1I
COMMION/ IN CUT/KOUT
rOL=I .E-1 2
MR:N C
IURM1=NR-1
TOL 1:1 .- 20

00 100 J=INC
FAC=OOT (NRA(JJ) ,ACJJ))
JI.,1=J-1
JRM=JJ+ RMI
JCM=JJ*JM1
00 20 [=JJtJCM4

20 U(I)=0.
U(JCM)=1.O
IF CJ.E0.i) GO TO 54

00 30 K=1 ,JM.
IF (S(K)oEQ.1*0) GO TO 30
T EMP :-DCT CNR 9ACJJ )vCKK))
CALL VADO (K9TEMPUCJJ)vP(KK))

30 KICKK*NCOL
DO 50 L=192
KK? I
DO 50 K:1 ,JMI
IF (S(K).EQ.0.) GO TO 50
TEMHP=-00r(N~vACJJ)9A(KKJ)
CALL V ADD(NR#TEMFvA(JJ) 9AI())
CALL VALJDCKiTEM1PvU(JJ) ,UCKI))

so KKZKK+NCOL
TCL1=TOL*FAC
FAC=DOT (NR PACJJ)tA (JJ))

54 IF CFAC.GT.TOLl) GO TO 70
DO 55 [=JjoJRM

55 A(I)=0.

DO 65 (:lJM1i
IF (S(K).EO.0.) G0 TO 65
TEP=-DOT CKUCKK .u(JJ))
C ALL VAOD (NR 9TEMPp A(JJ)9A (KC

65 KKZKK4NCOL
FAC=DOT(J .UCJJ) ,U(JJ))
MR=MR-I
Go 10 75

70 S(J)=l.O
KK:1
DO 72 K=I .JM1
ZF (SCK)*EQ.1.) GO TO 72
7EP=-DO'TCNltvACJJ)9ACKK))
CALL VAIOD'(KTE1PU(JJ)oUCKK))
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72 KK=KK+MCOL
75 FACl./SQRT(FAC)

DO 6C [ZJJtJRM
80 A (I )=A (1) FAC

DO 85 I=JJ*JCM
85 UC1 )=U( 1) FAC
100 JJ=JJ+NCOL

IF (MR.EQ.IIR.ORMR.EG.4C) 6O TO 120
IF CfT.NE.O) WR(TE(KOUT ,110)NR,qNC9tiR

110 FORMAT(1391W)C,1298H M1 IPA?KpZ)
120 NEND=NC*NCOL

JJ~ 1
DO 135 J=INC
DO 125 I-19NR.

S (1 )O.
00 125 KK =JJ 9MND 9NCOL

DO 130 I:19NAt
U(Il)ZS(1 )

135 J4:JJ*NCOLI
RET URN
END

SUBROUT(NE INIEGCNvAwCSvT)
C S=INTEGRAL EA*C*EA FROM 0 TO T

C C IS DESTROYED
0DIMENSION A CL)4pC( 1) S Cl)
COMMOt'/MA[I4/N0[MqNDIM1 ,XC1)
COMMON/MA UNO/NCOL iNCOLl.
COMMON/MA!I N2/COEF (100)
NN=N*NCOL
NMI=N1-l

AWNORH:K NO ft4(N9,A )

5 (F (AtORM*AS(DT) LE.0.5) GO TO 10

INOZIND*1
60 TO 5

to 00 15 I119Nt,CQL

DO 15 JJ=IJ

15 S(JJ)=DT*C(JJ)
TI: DT,* 2/2.
DO 25 IT:5,15
CALL MMUL(ACvHNNNX)
DO 20 1=19N
[ J:(ff-l)*NCOL
00 20 JJ:INNNCOL
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20 S (JJ)=S jJ) tC(JJ)
25 Tt=Dr/FLOAT(IT)

IF ([ND*EQ.0) 60 TO 100
COEF (11): 1.0
00 30 1=1.10

50 COEFCII)=DTD*COEF(11.1)/FLOATtI)

DO 40 1:1 ,tNNCOL

DO 35 JJ=IPJ
35 c~jj)=A(J~JI*COEF(1)

x(l1)=X(11I).COEF(2)
40 11=11.NCOLI

DO 55 L=3911
CALL MMULCAtXvNqNNC)

T 1:COEF (L)
DO 55 I~tsNIJNCOL

D0 50 JJ=1I,J
50 X(JJ):C(JJ)

XCI[)=X(II)+.Tl
55 1lII*NCOLI

C x =E(P (A*DT)
L=O

60 L:L.1
CALL IQIUL (X vS N 9N )JtC)
tI:1
DO 90 1=19N
~J=lI
IF ([.EQ.1) Go TO 75
DO 70 ijJ1,1INCOL
S(JJ):S (3)

70 J=J*1
75 DO 85 JJ:XaI

K K:JJ
DO 80 K=IX.NN*NCOL
S (J)=S(J).C (K) hX(KK)

80 KI(:KKNCOL
85 J=J.NCOL

00 87 JjzINNtNCOL
87 C(JJ)=X(JJ)
90 11:K1+NCOL

IF (L.EG.INO) GO TO 100
CALL MMIUL(CqCN,14,NX)
GO TO 60

100 CONTINUE
RET UR N
END
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SUBROUT INE MLINEQ(NvAvCtXvTOLIER)
C SCLVE' f'X-XitC=0

C A AND X( CAM4 BE IN SAME LOCATION
C ANSWER RETURNED IN C AND X

DIMLNSION A(IJC(1)9,X(I)
COMMON/HA INS/ NCOL PNCOL I
COMMON/MA 143/F(1)
ADV=TOL*1.E-6
01=95

,NNNNCOL
0O 5 11=1,NNoNCOLI

5 DTl:OTI-A(II)
DT1=DUl/M
IF CDTl.GToA.0) DV:DT*4.O/DTI

DO 20 1=19N
DO 15 JJ=I.NNtNCOL

15 X(JJ)=DTt'A(JJ)

20 I1=11,NCOLI
CALL GM1NVCN9NXFMR,0)
IER=A
IF (MR.NE.N) RETURN
CALL MMUL(CFN9NpNX)

C INITIALIZATION OF XtF
1=1
DO 40 II:1,NN,NCOL

IF (I.EG.1) GO TO 30
00 25 JJ:1IiNCOL
C(J):-C(JJ)

25 jJi1~
30 10=i

DO 55 JJ=119NNtNCOL
C(J)=DT*DOT (NoF(1I I JGJ))

35 J=J~l
FI10):F(I D). .0

40 1:1.1
DO 90 11=1920
MEZZO
CALL iMUL(CpF.,NMNX)

J~j,
60 TO 70

60 J=11
DO 65 JJ=ItIINCOL

65 J:J,1
70 ID:J

DTI=C(4J)
I ' 00 75 jjrioNNI'C0lL

C CJI:C(.J1 tOT C WF( II)t(JJ))
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75 J~j .1
J:J-1
DC BO JJ=1IPJ

80 x(JJ)=F(JJ)
IF (ABSCC(JD)).6T.1.El50) 6O TO 95
IF (A6S(C(lD)-DT2J.LT.(ADV.TOL.ABS(C(ID)))l NZ=NEZ*.1

I I=1.NCOL
IF (1.LE.N) GO 70 60
IF (NIE.EQ.N) Go TO 150
CALL tili'LXXM9,diV)

90 CONTINUE
95 IIER:1

RETURN
150 CONTINUE

0O 155 I=1,NNoNCOL

155 X(Djj:zC(jjJ
IER=0
RETURN
END

SUBROUTIMC NWUL(X9,,N1.N2,N3vZ)
COMNOI/MI ND/kCOL
DINENSION X(NCOLwI )tYCNC0L91)vZC(4COLt1)
DO 3 J=19N3
DO 2 I11NI

DO 1 K=2,N2

2 Z(IJ):S
3 CONTINUE

END

SUBROUTIME 14RC(NA,S0,XZOLIER)

COMMOM/MAINl/NOIflNDIMIF(1)
COMMNMA INA/NCOL ,NCOLI
COMMON/PAMAl/T(l)
COMMON/IN OUT/KOUt
AOV=TOL.1 *C-6

COUNT=Q0
IF (IER.CQ*I) C0UftT=99e
IF (IEReEQ.1) MR=N
IF (MeR.CQl) 0O TO 100

300 CONTINUE
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7 ER :0
COUNT:COUTJA.
o)c 15 1:1,1.
00 15 J:1,NNCOL

15 XCJ)=-S(J)
CALL IXTEGCNvAXZTl)
CALL FACTOR(NtZpXMR)
I £Rzl
IF (MR*LT-0) 60 TO 200
I ER :0
CALL GMINV(NNvEZtlv0)
CALL TFR(TR*ZeNtNg1,2)
CALL PMUVL(Z*TRvNNPNX)
DO 18 1I:1,NN*NCOLI
1211
DO 17 J=11,NNNCOL

X(1 ):XCJ)
17 1:1.2
16 CONTINUE
100 CONTINUE

DO 16 I11N
16 TR(I)=-I.0

C A.+SX IS STABLE
C POSSIBLE UNCONTROLLABILITY IF MR.NE4)
C JiIM DILLOW 1S A NUTTY MATH PROF

TOLI=70L/10.
(4AXrTz4o
DO 40 IT:1,1tAXIT
IF (IER.EQ.1) G0 TO 101
CALL MhUL(S9XvN,14,NpV)
CALL 1'tMUL (X Fo N N4Z)
00 20 I:1,#NNPNCOL

DO 20 J=IlI
X (J)=A(J) -FCJ)

20 Z(J)=Z(J)i0(,J)
101 COTrINUE

tER=0
CALL PLINEQ(NqX*Z9XvTOL1 PIER)
IF (ICR~ftE*0) 60 TO 200
L=O

DO 25 1:1,N
IF (A~S(CXI)-TpCI,))LT.CA0V+TOL)(I1b)) L-L*1

11:11 .NCOLI

IF (ABS(CI).6T.1.E20) 60 TO 50
IF (L.NE.N) 60 TO 40
CALL GNINV(N#NZtF*MR,0)
CALL MlMUL($tKNNs4Z)
DO 30 J:1,tt4COL.
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DO 30 J--1 ill
30 Z(J):A(J)-Z(J)

IF (MR.NE.N) WRITE (KOUT *35)14R
35 FORMAT(27HORICCATr smmN1s PSD--RANK PIS3)

s0 T0 65
40 CONTINUE

WRITECKOUTP46) MAXIT
45 FORMAT(27MORICCATI NON-CONVERGENT4 IN ,12,11H ITERATIONS)

GO T0 60
50 WRLTE(KOLIT#55)I1TT

55 FORMArT30HORICCATI SLOW-UP Al ITERATION 112,12H INITAL I: vF1O.51
60 IEPR:L
65 RETURN
200 IF (INO.EQ.2) G0 TO 250

IF (COUNT.GE.10.) RETURN
T1zT1/(2.* *COUN1)

so TO 300
250 TlzT1*(2.*-COUNT)

ENO:

SUSROUTINE PRNT(MArNM)
COMMON/MA 1NB/NCOL
REAL IATCNCOL9NCOL)
INTEGER Nvt,9J9KM
PRINT *90 1
IF (M.GT.12) S010 2
DO 1 1=10N
PRINTS (1K .12F10 .4) ',CMAT(1 .3) .31 i)

I CONTINUE
G070 10

2 CONTINUE
IF (P1.61.24) THENA
CALL PRNMTXL(MAYNPMJ
RE TURN
ENOIF
00 3 I119N
PRINT C lX 12FlO.4 ) 1(MAT(1,J) ,Ji=l 12)

3 CONTINUE
PRI MT @ (// )
00 41=9
PRINT'(lX.12F10.4j*,(MAT(IJhvJal3dq)

4 CONTINUE

RETURM
E NO
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SUBROUTINE PRNTXL(MAT ,NtM)
CCM.MV!NlMt TNN/COL
COMMCN/MA LNA/NDA
REAL MAT(NOANOA)
INTE61ER I vJ9KvLvMsN
PRINT*99'
DO 1 L=1,MP12
X = L + 11
IF (M-L.LT.2.1) K =
DO 2 I=19N
PRINT 'C (12 1FlO .4)',(MAT CI J ) J=L ,)

2 CONTINUE
PRINT'( //)'

I CONTINUE
PRINT 9C/I
RET URN
END

SUBROUTINE TFRCXA9MviKI)
C I= I GIVES X =As 2 GIVES X :A TRANSPOSE
C 3 GIVES X = A AS A VECTOR
C 4 GIVES A =X WHERE X WAS A VECTOR

DIMENSION XCI),A(I)
COMM14/MAI IJB/CCL,
JS=(K-1 )*NCOL*M
JEMD=MPNCOL
GO 7O (10 v 30 950 170) 91

DO 020 JJ=1IJENDtNCOL

RET URN
30 00 40 =1P

KK=(11-1) NCOL
DO 40 Jj:1,pI
LL=(JJ-1) *NCOL+II

40 C KK .J1J )A CLL uJS)
40 RETURN

00 60 I~ZlJENDPNCOL

LL:I11*4-
DO 60 JJ=IIgLL

60 X(KK)=A (J J.JS
RETURN

TO KK:N.N.1
00 80 11=19M

DO 80 UIJ:1N

,JJ=LL.N-I J
S0 A(,JJ.JS)=X(KK)

(_ RETURN
END
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FUNCICN4 001(NR9A #J3
DIMENSION A(1 ),B9i
DOT=0.
DO 1 I=1,NR

I DOT=OOT+A (I )*B(I)
RETURN
END

SUBROUTINE VAOCNClvAB)
DIMENSION AC1)98C1)
DO 1 I=l9N

1 A(I)=AC1).C1*B(1)
RETURN
END

FUNCTION XNORMCNtA)
C COMPUTES Ahi APPROXIMATION TO NORM OF A -- NOT A BOUN~D

DIMENSION 1(1)
F COMMIO/MAINB/JJCOLiNCOLI

k4IaN*NCOL
C1:O.
TR=A(1)
IF CNeEQ*2) GO TO 20
1 =2
DO 10 II=NCOLlipNN9NCOL
J=I I
DO 5 JJ=I tIItNCOL
C1 =Ct +ASS (A(J) * A(JJ))

5 J=J.1
TR=TR*A(J)

10 1=1+1
TRnrR /FLO AT(N)
00 15 II:INNpNCOLI

15 CI=C1.CA(II)-TR)..2
20 XHORt1=ABS(TR).SQRT(CI)

RETURN
END
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Appendix E

Line-of-Sight and Defocus Algorithm
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The equations relating optical surface motion are given below in

Eqs E-2, E-3, and E-4. These form the line-of-sight and defocus cri-

teria as

LOSX - Y/F, LOSY = X/F, DEFOCUS = Z (E-1)

where

x - A, [-Xp + xt  Rp.eYp + A2  eYs - 2T eYt] + X t - Xf (E-2)

Y -A 1 [-Yp + Yt Rp.Xp - A2  0Xs + 2T Xt + Yt - Yf (E-3)

Z - A [ Z- 2 Z + Z,] + Zt (E-4)

F - 8.051 - focal length

where

A1 - 0.2987

A2 - 93.90

A3 - 0.0892

R - 53.9
P

T - 66.95

The terms Xi, Yit Zi, exit eyis ezi for I - p, s, t, f refer to the trans-

lations and rotations in the global X, Y, and Z directions of the primary

(p), secondary (s), tertiary (t) and focal plane(f) elements. The coeffi-

cients A T, and F are functions of the radius of curvature of the mirrors.
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These are given by

R
A = t (E-5)

2T - Rt

R
A2 = -2. + t (E-6)

2 2

A 3 =i t (E-7)

[p - Rt + 2(t1 + t 2 )j2

R R
F = t p (E-8)

4T - 2Rt

R
T =_2 + t1 + t2  (E-9)

21 2

where

R = radius of curvature of the primary mirrorp

Rt M radius of curvature of the tertiary mirror

tI - axial distance from primary to secondary mirrors

t2 - axial distance from secondary to tertiary mirrors

The expressions for the translation and rotation of each mirror in global

coordinates may be formed in terms of the displacements at the nodes which

support the mirrors. These are given by the following equations in which the

numerical subscripts indicate specific support nodes.
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Primary Mirror:

Xp = X34 + 1.25 (34 - Y35 ) (E-10)

Yp = 0.50 (Y34 + Y3 5 ) (E-11)

Zp - -0.2143 (Z34 + Z35) + 0.7143 (Z28 + Z30) (E-12)

eXp - 0.0714 (Z34 + Z35) + 0.0714 (Z2 8 + Z30 ) (E-13)

eY - 0.125 (Z34 (E-14)
p 34  35)

OZ - 0.125 (Y - Y (E-15)

p ( 3 5  Y34)

Secondary Mirror:

X X (E-16)
s 40

Ys 8 Y 40 (E-17)

Zs =z 4 0  (E-18)

OX - eX40 (E-19)

oys = eY40 (E-20)

OZs - eZ40  (E-21)

Teritiary Mirror:

Xt - X2 7 + 0.3750 (Y29 - Y2 7) (E-22)

Yt a 0.50 (Y27 + Y29) (E-23)

Zt - 0.7143 (Z2 7 + Z29) - 0.2143 (Z32 + Z3 3) (E-24)
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OXt = 0.0714 (Z 27 + 29) + 0.0714 (Z 3 + z 3)(-5

e - 0.125 (Z - z(E-26)(27  Z29)

ezt = 0.125 (Y 29 - y27) (E-2 7)

Focal Plane:

X, m X + 0.6250 (Y1  -y) (E-28)
f 11 1

Yf = 0.50 (Y9 + y11 ) (E-29)

z f.z 40(E-30)

exf M0.10 (9+ 11 00Z 40(E-31)

eYf = 0 .125 (Z 9 -Z 11) (E-.32)

ez f . 0.125 (Y 11 -Y 9) (E-33)
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